“<EFINIX.

AXI Interconnect Core User
Guide

UG-CORE-AXI-INTERCON-v1.4
February 2023
www.efinixinc.com

Copyright © 2023. All rights reserved. Efinix, the Efinix logo, the Titanium logo, Quantum, Trion, and Efinity are trademarks of Efinix, Inc. All other
trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com

Contents

Introduction 3
Features 3
Resource Utilization and Performance 3
Functional Description 4
POIES et bttt h e s h e eet et h e eat e et e b e ean e eate e teen 4
JaNd o 14 = 1 o oI 1Y, Lo Yo =Y USRS 9
JaNe o T =Y elo Yo =Y =S SRRSO 10
AXI INterconNNeCt OPEratioNS....c..cviiiieieiiiiie ettt st 11
IP IMIANQQgeT...cceuecireeeieeeenereenereeccssecssseescseessssessssessssessssssssssessssessssesssssssssssssssessssesssssssssessssssssssesssnessss 14
Customizing the AXI Interconnect 15
AXI Interconnect Example Design 16
AXI Interconnect Testbench 17
Revision History 17

AXI Interconnect Core User Guide

Introduction

The AXI Interconnect core manages traffic on the AXT interfaces where it allows you

to connect one or more AXI memory-mapped masters to one or more AXI memory-
mapped slaves. For example, when multiple masters are issuing AXI transaction requests
simultaneously, the AXI Interconnect core determines which AXI master issues the AXI
transaction.

The AXI Interconnect core targets applications such as multiple masters accessing
HyperRAM controller using half duplex AXI mode or configurations on multi-slave devices
using the same master device.

Use the IP Manager to select IP, customize it, and generate files. The AXI Interconnect core
has an interactive wizard to help you set parameters. The wizard also has options to create a
testbench and/or example design targeting an Efinix® development board.

Features

* Supports AXI3, AXI4, and AXI4-lite interfaces
* Supports N-to-1, 1-to-N, N-to-M (shared access mode) interconnect
* Supports 3 arbitration modes
— Fixed priority
— Round robin 1
— Round robin 2
* Verilog HDL RTL and simulation testbench

New in v2022.2
Added pipestage to improve timing critical path.

FPGA Support

The AXI Interconnect core supports all Trion” and Titanium FPGAs.

Resource Utilization and Performance

Note: The resources and performance values provided are just guidance and change depending on the
device resource utilization, design congestion, and user design.

Titanium Resource Utilization and Performance

FPGA Configuration Logicand | Flip-flops Memory | DSP Blocks | fyax (MHz) Efinity®
Adders Blocks Version
Ti60 F225 | 1-to-8 with 32-bit 470 214 0 0 360 2022.1
C4 data width
2-to-1 with 128-bit 910 720 0 0 315
data width

M Using Verilog HDL.

www.efinixinc.com 3

Functional Description

AXI Interconnect Core User Guide

The AXI Interconnect core consists of the following blocks:

* Arbiter—Logic for 3 different arbitration modes
* Skid Buffer—Datapath for write data channel and read data channel

° Address decoders—Decodes address from the incoming AXI transaction and determines the
targeted AXI slave transaction

Figure 1: AXl Interconnect System Block Diagram

Connected to
AXI Master

A

Write Address
Channel (Slave)

Read Address
Channel (Slave)

A

Write Data
Channel (Slave)

Read Data
Channel (Slave)

v

A

A

Write Response
Channel (Slave)

v

Ports

v

AXIl Interconnect Core

Arbiter
Decoder
and
State
Machine
Skid
Buffer

clk
—>

rstn
—>

Write Address
_ Channel (Master)

Read Address
_ Channel (Master)

v

Write Data

v

Connected to

__ Channel (Master)

Read Data
_ Channel (Master)

v

AXI Slave

Write Response
_ Channel (Master)

v

@ Note: M represents the number of AXI master ports while S represents the number of AXI slave ports.

Table 1: Global

Port Direction | AXI3 AXl4 | AXI4-Lite Description
clk Input Vv v Vv Clock
rst_n Input v v v Active low asynchronous reset

www.efinixinc.com

4

Table 2: Write Address Channel (Slave)

AXI Interconnect Core User Guide

Port Direction | AXI3 AXI4 | AXI4-Lite Description
s_axi_awvalid[S-1:0] Input v v v Write address channel valid
s_axi_awaddr[S*ADDR_WIDTH-1:0] Input v v v Write address channel address
s_axi_awprot[S*3-1:0] Input v v v Write address channel protect
s_axi_awid[S*ID_WIDTH-1:0] Input v v - Write address channel
transaction ID
s_axi_awburst[S*2-1:0] Input v v - Write address channel burst type
s_axi_awlen[5*8-1:0] Input v v - Write address channel burst
length

s_axi_awsize[S$*3-1:0] Input v v - Write address channel transfer
size

s_axi_awcache[S$*4-1:0] Input - v - Write address channel cache
encoding

s_axi_awqos[5*4-1:0] Input - v - Write address channel Quality of

Service (QoS)
s_axi_awuser[S*USER_WIDTH-1:0] Input - v - Write address channel user-

defined signals
s_axi_awlock[S*2-1:0] Input v - - Write address channel locked

transaction
s_axi_awready[S-1:0] Output v v v Write address channel ready
Table 3: Write Data Channel (Slave)

Port Direction | AXI3 AXl4 | AXI4-Lite Description
s_axi_wvalid[S-1:0] Input v v v Write channel valid
s_axi_wdata[S*DATA_WIDTH-1:0] Input v v v Write channel data
s_axi_wstrb[S*STRB_WIDTH-1:0] Input v v v Write channel strobe (Single bit

represents data byte)
s_axi_wlast[S-1:0] Input v v - Write channel last data beat
s_axi_wuser[S*USER_WIDTH-1:0] Input - v - Write channel user-defined

signals
s_axi_wid[S*ID_WIDTH-1:0] Input v - - Write channel transaction ID
s_axi_wready[S-1:0] Output v v v Write channel ready

www.efinixinc.com 5

Table 4: Write Response Channel (Slave)

AXI Interconnect Core User Guide

Port Direction | AXI3 AXI4 | AXI4-Lite Description
s_axi_bready[S-1:0] Input v v v Write response channel ready
s_axi_bresp[S$*2-1:0] Output v v v Write response channel response
s_axi_bvalid[S5-1:0] Output v v v Write response channel valid
s_axi_bid[S*ID_WIDTH-1:0] Output v v - Write response channel

transaction ID
s_axi_buser[S*USER_WIDTH-1:0] Output - v - Write response channel user-
defined ID
Table 5: Read Address Channel (Slave)
Port Direction | AXI3 AXI4 | AXI4-Lite Description
s_axi_arvalid[S-1:0] Input v v v Read address channel valid
s_axi_araddr[S*ADDR_WIDTH-1:0] Input v v v Read address channel address
s_axi_arprot[$*3-1:0] Input v v v Read address channel protect
s_axi_arid[S*ID_WIDTH-1:0] Input v v - Read address channel transaction
ID

s_axi_arburst[S*2-1:0] Input v v - Read address channel burst type

s_axi_arlen[$*8-1:0] Input v v - Read address channel burst
length

s_axi_arsize[S5*3-1:0] Input v v - Read address channel transfer
size

s_axi_arcache[S*4-1:0] Input - v - Read address channel cache
encoding

s_axi_arqos[S*4-1:0] Input - v - Read address channel QoS

s_axi_aruser[S*USER_WIDTH-1:0] Input - v - Read address channel user-
defined signals

s_axi_arlock[S$*2-1:0] Input v - - Read address channel locked
transaction

s_axi_arready[S-1:0] Output v v v Read address channel ready

Table 6: Read Data Channel (Slave)

Port Direction | AXI3 AXl4 | AXI4-Lite Description
s_axi_rready[S-1:0] Input v v v Read data channel ready
s_axi_rid[S*ID_WIDTH-1:0] Output v v - Read data channel transaction ID
s_axi_rdata[S*DATA_WIDTH-1:0] Output v v v Read data channel data
s_axi_rresp[S$*2-1:0] Output v v v Read data channel response
s_axi_rvalid[S-1:0] Output v v v Read data channel valid
s_axi_rlast[S-1:0] Output v v - Read data channel last data beat
s_axi_ruser[S*USER_WIDTH-1:0] Output - v - Read data user-defined channel

www.efinixinc.com 6

AXI Interconnect Core User Guide

Table 7: Write Address Channel (Master)

Port Direction | AXI3 AXI4 | AXI4-Lite Description
m_axi_awvalid[M-1:0] Output v v v Write address channel valid
m_axi_awaddr[M*ADDR_WIDTH-1:0]| Output v v v Write address channel address
m_axi_awprot[M*3-1:0] Output v v v Write address channel protect
m_axi_awid[M*ID_WIDTH-1:0] Output v v - Write address channel

transaction ID
m_axi_awburst{M*2-1:0] Output v v - Write address channel burst type
m_axi_awlen[M*8-1:0] Output Vv v - Write address channel burst

length
m_axi_awsize[M*3-1:0] Output v v - Write address channel transfer
size
m_axi_awcache[M*4-1:0] Output - v - Write address channel cache
encoding
m_axi_awqgos[M*4-1:0] Output - v - Write address channel QoS
m_axi_awuser[M*USER_WIDTH-1:0] | Output - v - Write address channel user-
defined signals
m_axi_awlock[M*2-1:0] Output v - - Write address channel locked
transaction
m_axi_awready[M-1:0] Input v v v Write address channel ready
Table 8: Write Data Channel (Master)

Port Direction | AXI3 AXl4 | AXI4-Lite Description
m_axi_wvalid[M-1:0] Output v v v Write channel valid
m_axi_wdata[M*DATA_WIDTH-1:0] Output v v v Write channel data
m_axi_wstrb[M*STRB_WIDTH-1:0] Output Vv v Vv Write channel strobe (single bit

represents data byte)
m_axi_wlast{M-1:0] Output v v - Write channel last data beat
m_axi_wuser[M*USER_WIDTH-1:0] Output - v - Write channel user-defined

signals
m_axi_wid[M*ID_WIDTH-1:0] Output v - - Write channel transaction ID
m_axi_wready[M-1:0] Input v v v Write channel ready
Table 9: Write Response Channel (Master)

Port Direction | AXI3 AXl4 | AXI4-Lite Description
m_axi_bready[M-1:0] Output Vv v Vv Write response channel ready
m_axi_bresp[M*2-1:0] Output v v v Write response channel response
m_axi_bvalid[M-1:0] Output v v v Write response channel valid
m_axi_bid[M*ID_WIDTH-1:0] Output v v - Write response channel

transaction |ID
m_axi_buserl[M*USER_WIDTH-1:0] Input - v - Write response channel user-

defined ID

www.efinixinc.com 7

Table 10: Read Address Channel (Master)

AXI Interconnect Core User Guide

Port Direction | AXI3 AXI4 | AXI4-Lite Description
m_axi_arvalid[M-1:0] Output v v v Read address channel valid
m_axi_araddr[M*ADDR_WIDTH-1:0] | Output v v v Read address channel address
m_axi_arprot{M*3-1:0] Output v v v Read address channel protect
m_axi_arid[M*ID_WIDTH-1:0] Output v v - Read address channel transaction
ID

m_axi_arburst{fM*2-1:0] Output v v - Read address channel burst type

m_axi_arlen[M*8-1:0] Output v v - Read address channel burst
length

m_axi_arsize[M*3-1:0] Output v v - Read address channel transfer
size

m_axi_arcache[M*4-1:0] Output - v - Read address channel cache
encoding

m_axi_arqos[M*4-1:0] Output - v - Read address channel QoS

m_axi_aruserfM*USER_WIDTH-1:0] Output - v - Read address channel user-
defined signals

m_axi_arlock[M*2-1:0] Output v - - Read address channel locked
transaction

m_axi_arready[M-1:0] Input v v v Read address channel ready

Table 11: Read Data Channel (Master)

Port Direction | AXI3 AXl4 | AXI4-Lite Description
m_axi_rready[M-1:0] Output v v v Read data channel ready
m_axi_rid[M*ID_WIDTH-1:0] Output v v - Read data channel transaction ID
m_axi_rdata[M*DATA_WIDTH-1:0] Output v v v Read data channel data
m_axi_rresp[M*2-1:0] Output v v v Read data channel response
m_axi_rvalid[M-1:0] Output v v v Read data channel valid
m_axi_rlast{M-1:0] Output v v - Read data channel last data beat
m_axi_ruser[M*USER_WIDTH-1:0] Input - v - Read data user-defined channel

www.efinixinc.com 8

AXI Interconnect Core User Guide

Arbitration Modes

The AXIT Interconnect core includes arbiter engines that grant the request to an AXI master
when more than one AXI master issues a request. The AXI Interconnect supports three types
of arbitration modes.

Fixed Priority

In this mode, the arbiter always prioritizes the most significant bit (MSB) ports as indicated
by the bits shown in bold in the following example. Lower priority ports suffer from
starvation.

Request 11100000 | 11100000 | 11100000 | 1110010 | 00001011 | 00000000 | 00001111 | 11111111
Grant 10000000 | 10000000 | 10000000 | 10000000 | 00001000 | OO000000 | 00001000 | 10000000
Round Robin 1
The arbitration starts from the MSB port. When more than two transaction requests are
issued at the same time, the arbiter grants the request to the port sitting on the right-hand side
nearest to the previously served port.
Example:
Request 11100000 | 11100000 | 11100000 | 1110010 | 00001011 | 00000000 | 00001111 | 11111111
Grant 10000000 | 01000000 | 00100000 | 00000010 | 00000001 | OO000000 | 00001000 | 00000100
Round Robin 2
The arbitration starts from the MSB port. The arbitration goes through all connected master
ports sequentially with a counter. When there is no request from the assigned master, the
arbiter grants the port sitting on the right-hand side nearest to the assigned port. There are no
counter increments when there are no requests.
Example:
Request 11100000 | 11100000 | 11100000 | 1110010 | 00001011 | 00000000 | 00001111 | 11111111
Counter 7 6 5 4 3 3 2 1
Grant 10000000 | 01000000 | 00100000 | 00000010 | 00001000 | OO000000 | 00000100 | 00000010

www.efinixinc.com 9

AXI Interconnect Core User Guide

Address Decoders

The address decoder performs address decoding from the incoming AXI transaction address
and determines the targeted AXI slave transaction. The AXI Interconnect core does not alter
the targeted address content and forwards it entirely to the slave device.

The following table shows an example of AXI slave ports that have a 12-bit address space.
The AXT Interconnect core decodes the address and routes the transaction request to the
corresponding slave without discarding the address offset.

Table 12: Address Decoder Example

Original Address Forwarded Address Targeted Slave
00000FFF 00000FFF 0
00001FFF 00001FFF 1
00002FFF 00002FFF 2
00003FFF 00003FFF 3

www.efinixinc.com 10

AXI Interconnect Core User Guide

AXI Interconnect Operations

The following two waveforms illustrate a 2-to-1 interconnect example using fixed
priority arbitration mode. There are three requests from two AXI master ports. The AXI
Interconnect core grants read operation from port 1 (s_axi arvalid[1]) because:

* Port 1 has a higher index (MSB)

* A read operation has a higher priority than a write operation

The ready signal of the address channel (s _axi arready[1]) assertion indicates the
request has been accepted. There is one clock cycle latency for the read request to be present
on the AXT interconnect output.

Figure 2: Fixed Priority Arbitration 2-to-1 Interconnect Example Waveform (Request)

ek | L 0 J 7 7 7 [[_]

s_axi_arvalid[1] \

s_axi_awvalid[1]

s_axi_arvalid[0]

s_axi_awvalid[0]

s_axi_arready[1]
s_axi_awready[1] 1 clock cycle latency

s_axi_arready[0]

s_axi_awready[0]

m_axi_arvalid[0] \ﬂ \
m_axi_arready[0]

m_axi_awvalid[0]

m_axi_awready[0]

Read operations, there is one clock cycle latency for the data to be present on the AXI
interconnect input.

Figure 3: Fixed Priority Arbitration 2-to-1 Interconnect Example Waveform (Read)

ok [L L0 L0 L L4] L °L_
m_axi_rvalid[0] [\—] l

m_axi_rdata[127:0] X read data 1 X read data 2
s_axi_rvalid[1] 1 clock cycle latency]
s_axi_rdata[255:128] X read data 1 X read data 2

s_axi_rvalid[0]

s_axi_rdata[127:0]

www.efinixinc.com 11

The following waveform illustrates the AXI interconnect of a 1-to-8 operation. The AXI
interconnect decodes the slave destination from the write/read address channel and routes the
transaction to the corresponding destination. For example, each of the connected slaves has

a 12-bit address range. Address ‘h4000 indicates that the transaction request is targeting slave
port 4.

ek | L L L/ 7 7 7 [T [_]

s axiarvalid)] | \

s_axi_awvalid[0]
s_axi_awaddr[31:0]
m_axi_awvalid[7]
m_axi_awvalid[6]

m_axi_awvalid[5]

m_axi_awvalid[4] & Decoded destination Ty

m_axi_awvalid[3]
m_axi_awvalid[2]
m_axi_awvalid[1]
m_axi_awvalid[0]
m_axi_awready[7:0]
s_axi_wvalid[0]
s_axi_wdata[31:0]
m_axi_wvalid[7]
m_axi_wvalid[6]
m_axi_wvalid[5]
m_axi_wvalid[4]
m_axi_wvalid[3]
m_axi_wvalid[2]
m_axi_wvalid[1]
m_axi_wvalid[0]

m_axi_wdata[255:0]

X 00004000 | X
/‘J //ﬁ

/

- /1 clock cycle latency
/

FF

YGE4AF16AX02AD58F4)(637081C2)4D4CF20AX994..

\

1 clock cycle latency

>

YSE4AF16A)02AD58F4)637081C2)(4D4..

The following waveform illustrates a transaction address request with an invalid range.

Each of the connected slaves has a 12-bit address range. There are eight destination slaves
configured in the AXI interconnect where the valid decoded address range is 0h0 to Oh7£f£.
However, the master side is driving a transaction address to hE000, which is out of the valid
address range. The AXT Interconnect core denies the transaction by returning the decoder
error.

ek | L 0 J 7 7 7 [T [_]

M_PORTS
M_ADDR_WIDTH
s_axi_arvalid[0:0]
s_axi_arready[0:0]
s_axi_araddr[31:0]
m_axi_arvalid[7]
m_axi_arvalid[6]
m_axi_arvalid[5]
m_axi_arvalid[4]
m_axi_arvalid[3]
m_axi_arvalid[2]
m_axi_arvalid[1]
m_axi_arvalid[0]
m_axi_rvalid[0:0]
s_axi_rresp[1:0]

s_axi_rlast[0:0]

8

0000000c_0000000c_0000000c_0000000c_0000000c_0000000c_0000000c_0000000c

| \

]

X 0000E000 X
[

\

\Decoder error
v

=
X 3

AXI Interconnect Core User Guide

IP Manager

The Efinity” IP Manager is an interactive wizard that helps you customize and generate
Efinix® IP cores. The IP Manager performs validation checks on the parameters you set to
ensure that your selections are valid. When you generate the IP core, you can optionally
generate an example design targeting an Efinix development board and/or a testbench. This
wizard is helpful in situations in which you use several IP cores, multiple instances of an IP
core with different parameters, or the same IP core for different projects.

@ Note: Not all Efinix IP cores include an example design or a testbench.

Generating a Core with the IP Manager

The following steps explain how to customize an IP core with the IP Configuration wizard.

1. Open the IP Catalog.
2. Choose an IP core and click Next. The IP Configuration wizard opens.
3. Enter the module name in the Module Name box.

@ Note: You cannot generate the core without a module name.

4. Customize the IP core using the options shown in the wizard. For detailed information
on the options, refer to the IP core's user guide or on-line help.

5. (Optional) In the Deliverables tab, specify whether to generate an IP core example
design targeting an Efinix” development board and/or testbench. For SoCs, you can also
optionally generate embedded software example code. These options are turned on by

default.
6. (Optional) In the Summary tab, review your selections.
7. Click Generate to generate the IP core and other selected deliverables.

8. In the Review configuration generation dialog box, click Generate. The Console in the
Summary tab shows the generation status.

Note: You can disable the Review configuration generation dialog box by turning
off the Show Confirmation Box option in the wizard.

9. When generation finishes, the wizard displays the Generation Success dialog box. Click
OK to close the wizard.

The wizard adds the IP to your project and displays it under IP in the Project pane.
Generated Files

The IP Manager generates these files and directories:

* <module name>_define.vh—Contains the customized parameters.
* <module name>_tmpl.v—Verilog HDL instantiation template.

* <module name>_tmpl.vhd—VHDL instantiation template.

* <module name>.v—IP source code.

* settings.json—Configuration file.

o <kit name>_devkit—Has generated RTL, example design, and Efinity” project targeting
a specific development board.
* Testbench—Contains generated RTL and testbench files.

Note: Refer to the IP Manager chapter of the Efinity® Software User Guide for more information about the
Efinity® IP Manager.

www.efinixinc.com 14

AXI Interconnect Core User Guide

Customizing the AXI Interconnect

The core has parameters so you can customize its function. You set the parameters in the
General tab of the core's IP Configuration window.

Table 13: AXI Interconnect Core Parameters (General Tab)

Parameters Options Description
Protocol AXI3, AX4, Defines the AXI Interface Protocol
AXI4-LITE Default: AXI4
Arbitration Mode PRIORITY, Defines the Arbitration Mode

ROUND_ROBIN_1,
ROUND_ROBIN_2

Default: PRIORITY

Number of Slave 1-8 Defines the number of slave interface connected to the master port.
Interfaces Default: 2
Number of Master 1-8 Defines the number of master interface connected to the slave port.
Interfaces Default: 1
AXI Address 12-64 Defines the address channel address width.
Width Default: 32
AXI| Data Width 32, 64,128, Defines the write/read channel data width.

256,512 Default: 32
AXI ID Width 1-32 Defines the ID transaction width.

Default: 1

AXI User Width 1-32 Defines the user define signal width.

Default: 1

Table 14: AXI Interconnect Core Parameters (AXI Tab)

The number of AXI_S rows depends on the Number of Slave Interfaces parameter you set.

Parameters Options Description

Destination 12-32 Defines the slave address width.

Address Spe}ce You can configure multiple slaves with different address widths by

(Address Width) concatenating the parameter.
Example: Slave 0 and slave 1 have an address width of 12, slave 2 has
an address width of 20, and slave 3 has an address width of 24. The
correct parameter setting is {32'd24, 32'd20, 32'd12, 32'd12}.
Default: 12

Destination h00001000 Starting offset address for each slave.

Address Offset - hFFFFFO00 Example: The starting offset address for each slave are:

(Base Address)

® slave 0 (12-bit) : 00000000
¢ slave 1(12-bit) : 00001000

slave 2 (20-bit) : 00100000
® slave 3 (24-bit) : 01000000

The correct parameter setting is,
{32'h01000000, 32'h00100000, 32'h00001000, 32'h00000000}

www.efinixinc.com 15

AXl Inte

@ Important:

AXI Interconnect Core User Guide

rconnect Example Design

You can choose to generate the example design when generating the core in the IP Manager
Configuration window. Compile the example design project and download the .hex or .bit
file to your board.

Efinix tested the example design generated with the default parameter options only.

The example designs target the Titanium Ti60 F225 Development Board. The design
implements an AXI Interconnect in the FPGA and demonstrates a single master port access
to eight different slave ports. The read and write data is routed by the AXT Interconnect core
according to addresses assigned.

Figure 6: AXI Interconnect Example Design

AXl-Interconnect Core Example Design

Master 1 AXI Port ’ AXI Interconnect Core

8 AXI Ports
Test Done
i ¢ Test Pass)
Slave Slave Slave Test Fail I -
AXI_S0 AXI_S1 oo AXI_S7

LED D16

The master issues eight 128-burst of AXI write data each targeting 8 different slaves. Each
slave consists of 128-depth data FIFO making each data transaction to fill up the available
FIFO. The master issues read operation to all slaves. Then the master compares read data
with the write data from each slave accordingly. The development board LEDs output the
following:

Table 15: Example Design Output

Output Description
LED D16 Blue Test Done Indicates the test is completed.
LED D16 Green | Test Pass Indicates the written and read data are matched.
LED D16 Red Test Fail Indicates the written and read data are not matched.

www.efinixinc.com 16

AXI Interconnect Core User Guide

Table 16: Slave Ports Address Range

Slave Base Address Address Width
AXI_SO 0x00000000 28
AXI_S1 0x10000000 24
AXI_S2 0x11000000 12
AXI_S3 0x11100000 20
AXI_S4 0x20000000 28
AXI_S5 0x30000000 28
AXI_S6 0x40000000 24
AXI_S7 0x41000000 20

AXI| Interconnect Testbench

You can choose to generate the testbench when generating the core in the IP Manager
Configuration window.

@ Note: You mustinclude all .v files generated in the /testbench directory in your simulation.

Efinix provides a simulation script for you to run the testbench quickly using the Modelsim
software. To run the Modelsim testbench script, run vsim -do modelsim.doina
terminal application. You must have Modelsim installed in your computer to use this script.

The testbench instantiates the IP core and also the simplified AXI master and slave models.
The AXI master performs write and read transaction requests to eight different slave
destinations. The AXI Interconnect routes the transaction request to the corresponding slave
destination. All the written data is read back through read the data channel and compared
throughout the simulation.

Revision History

Table 17: Revision History

Date Version Description

February 2023 1.4 Added note about the resource and performance values in the
resource and utilization table are for guidance only.

December 2022 1.3 Added New in Version topic.

August 2022 1.2 Updated for Efinity IP Manager.
Added example design section.

March 2022 1.1 Update M_ADDR_WIDTH and added M_BASE_ADDR parameters.
(DOC-759)

February 2022 1.0 Initial release.

www.efinixinc.com 17

	Contents
	Introduction
	Features
	Resource Utilization and Performance
	Functional Description
	Ports
	Arbitration Modes
	Address Decoders
	AXI Interconnect Operations

	IP Manager
	Customizing the AXI Interconnect
	AXI Interconnect Example Design
	AXI Interconnect Testbench
	Revision History

