
Opal (Xyloni) RISC-V SoC
Hardware and Software
User Guide

UG-RISCV-OPALX-v1.2
November 2021
www.efinixinc.com

Copyright © 2021. All rights reserved. Efinix, the Efinix logo, the Titanium logo, Quantum, Trion, and Efinity are trademarks of Efinix, Inc. All other
trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Contents
Introduction...iv

VexRiscv RISC-V Core... iv
Required Software... v
Required Hardware..v

Chapter 1: Install Software and SoC... 6
Install the Efinity® Software.. 6
Install the SoC Files...6
Install the RISC-V SDK.. 7
Install the Java JRE... 7
Installing USB Drivers... 7

Chapter 2: About the RTL Example Design.. 9

Chapter 3: Launch Eclipse... 10
Set Global Environment Variables..10

Chapter 4: Create and Build a Software Project... 12
Create a New Project..12
Import Project Settings (Optional).. 13
Enable Debugging..14
Build.. 15

Chapter 5: Debug with the OpenOCD Debugger.. 16
Import the Debug Configuration..16
Debug... 17
Enable Telnet on Windows..18
Open a Terminal..19

Chapter 6: Create Your Own RTL Design..20
Create a Custom APB3 Peripheral..20
Remove Unused Peripherals from the RTL Design.. 20

Chapter 7: Create Your Own Software..21
Deploying an Application Binary..21

Boot from a Flash Device...21
Boot from the OpenOCD Debugger... 21
Copy a User Binary to the Flash Device.. 22

About the Board Specific Package...23
Address Map..24
Example Software..25

blinkAndEcho Example...26
EfxApb3Example..26
i2cDemo Example... 26
readFlash Example.. 26
spiDemo Example... 27
timerAndGpioInterruptDemo Example.. 27
userInterruptDemo Example..27
writeFlash Example..28
Xyloni_SelfTest Example... 28

Chapter 8: Troubleshooting...29
Error 0x80010135: Path too long (Windows)..29
OpenOCD Error: timed out while waiting for target halted...29

www.efinixinc.com

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

OpenOCD error code (-1073741515)... 30
OpenOCD Error: no device found...30
OpenOCD Error: failed to reset FTDI device: LIBUSB_ERROR_IO.. 30
OpenOCD Error: target 'fpga_spinal.cpu0' init failed...31
Eclipse Fails to Launch with Exit Code 13...31
Undefined Reference to 'cosf'...31

Chapter 9: API Reference.. 32
Control and Status Registers...32
GPIO API Calls...33
I2C API Calls...37
I/O API Calls...42
Machine Timer API Calls.. 44
PLIC API Calls.. 44
SPI API Calls...45
SPI Flash Memory API Calls...47
UART API Calls...49
Handling Interrupts... 51

Revision History...54

www.efinixinc.com

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Introduction

Efinix provides a soft RISC-V SoC, called Opal, that you can implement in Trion® or
Titanium FPGAs. This user guide describes how to:
• Build RTL designs using the Opal RISC-V SoC using an example design targeting an

Efinix® development board, and how to extend the example for your own application.
• Set up the software development environment using an example project, create your own

software based on example projects, and use the API.

Note: This user guide describes how to use the Opal SoC that is provided with the Efinity® v2020.2 or
higher. Previous versions of the SoC were available as downloads in the Support Center. Although the
functionality of the SoC is essentially the same, the IP Manager allows you to set parameters to customize
the Opal SoC, and the resulting directory structure is different.

Figure 1: Designing Hardware and Software for the Opal RISC-V SoC

FPGA

RTL Design
RISC-V SoC

Eclipse IDE

GCC Toolchain

OpenOCD

Windows
Build

Tools (1)

Java JRE

1. Windows build tools required on Windows platforms only.

Efinity
Software

Create Hardware
(RTL) DesignCreate Software Code (C/C++)

Software

Create your RTL
design in the Efinity
software and then
program it into the
FPGA.

Write your C/C++
code using the
Eclipse IDE and
then copy it to the
flash memory.

Learn more: Refer to the Opal RISC-V SoC Data Sheet for detailed specifications on the SoC.

VexRiscv RISC-V Core
The Opal SoC is based on the VexRiscv core created by Charles Papon. The VexRiscv core
is a 32-bit CPU using the ISA RISCV32I with M and C extensions, has five pipeline stages
(fetch, decode, execute, memory, and writeback), and a configurable feature set.

In the Opal SoC, the cacheless VexRiscv core supports an APB3 bus interface and can run at
speeds up to 0.98 DMIPS/MHz.

The VexRiscv core won first place in the RISC-V SoftCPU contest in 2018.(1)

(1) https://www.businesswire.com/news/home/20181206005747/en/RISC-V-SoftCPU-Contest-Winners-Demonstrate-
Cutting-Edge-RISC-V

www.efinixinc.com iv

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=OPALDS
https://www.businesswire.com/news/home/20181206005747/en/RISC-V-SoftCPU-Contest-Winners-Demonstrate-Cutting-Edge-RISC-V
https://www.businesswire.com/news/home/20181206005747/en/RISC-V-SoftCPU-Contest-Winners-Demonstrate-Cutting-Edge-RISC-V

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Required Software
To write software for the Opal SoC, you need the following tools. The SDK is available as a
single download in the Support Center for Windows and Ubuntu operating systems.

Efinity® Software
Efinix® development environment for creating RTL designs targeting Trion® or Titanium
FPGAs. The software provides a complete RTL-to-bitstream flow, simple, easy to use GUI
interface, and command-line scripting support.
Version: 2020.2 or higher

RISC-V SDK
Eclipse MCU—Open-source Java-based development environment that uses plug-ins to
extend and customize its functionality. The GNU MCU Eclipse plug-in lets you develop
applications for ARM and RISC-V cores.
Version: 2020-09 (4.17.0)
Disk space required: 433 MB (Windows), 433 MB (Linux)

xPack GNU RISC-V Embedded GCC—Open-source, prebuilt toolchain from the xPack
Project.
Version: 8.3.0-1.1
Disk space required: 1.78 GB (Windows), 1.73 GB (Linux)

OpenOCD Debugger—The open-source Open On-Chip Debugger (OpenOCD) software
includes configuration files for many debug adapters, chips, and boards. Many versions of
OpenOCD are available. The Efinix RISC-V flow requires a custom version of OpenOCD
that includes the VexRiscv 32-bit RISC-V processor.
Version: 20200421
Disk space required: 9.4 MB (Windows), 7.4 MB (Linux)

GNU MCU Eclipse Windows Build Tool (Windows Only)—This open-source Windows-
specific package helps to manage build projects and includes GNU make.
Version: 2.12-20190422-1053
Disk space required: 3.8 MB

Java JRE
Open-source Java 64-bit runtime environment; required for Eclipse.
Version: 8 Update 241
https://www.java.com/en/download/manual.jsp (Java 8 official release)
https://developers.redhat.com/products/openjdk/download (OpenJDK 8 or 11)
http://jdk.java.net/16/ (OpenJDK 16)

Required Hardware
• Xyloni Development Board
• Micro-USB cable
• Computer or laptop

www.efinixinc.com v

https://www.java.com/en/download/manual.jsp
https://developers.redhat.com/products/openjdk/download
http://jdk.java.net/16/

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Chapter 1

Install Software and SoC
Contents:

• Install the Efinity Software
• Install the SoC Files
• Install the RISC-V SDK
• Install the Java JRE
• Installing USB Drivers

Install the Efinity® Software
If you have not already done so, download the Efinity® software from the Support Center
and install it. For installation instructions, refer to the Efinity Software Installation User
Guide.

Warning: Do not use spaces or non-English characters in the Efinity path.

Install the SoC Files
To install the Opal SoC:

1. Create a directory called riscv at the root level of your file system.
2. Download the files from Github in the xyloni/design/soc_Opal_t8 directory and save

them into the riscv directory.

The files are organized in this directory structure:
• soc_Opal_t8

— soc_Opal_hw_t8—Hardware files.
– source—RTL source code for the T8 BGA81 FPGA.
– Xyloni_kit—Example Efinity® project targeting the Xyloni Development Board.

— soc_Opal_sw_t8—Software files.
– bsp—Board specific package.
– software—Software examples.
– config—Has the Eclipse project settings file and OpenOCD debug configuration

settings files for Windows.
– config_linux—Has the Eclipse project settings file and OpenOCD debug

configuration settings files for Linux.
– cpu0.yaml—CPU file for debugging.

www.efinixinc.com 6

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-INSTALL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-INSTALL

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Install the RISC-V SDK
To install the SDK:

1. Download the file riscv_sdk_windows-v<version>.zip or riscv_sdk_ubuntu-
v<version>.zip from the Support Center.

2. Create a directory for the SDK, such as c:\riscv-sdk (Windows) or home/my_name/
riscv-sdk (Linux).

3. Unzip the file into the directory you created. The complete SDK is distributed as
compressed files. You do not need to run an installer.

Windows directory structure:

• SDK_Windows
— eclipse—Eclipse application.
— GNU MCU Eclipse—Windows build tools.
— openocd—OpenOCD debugger.
— riscv-xpack-toolchain_8.3.0-1.1_windows—GCC compiler.
— run_eclipse.bat—Batch file that sets variables and launches Eclipse.
— setup.bat—Batch file to set variables for running OpenOCD on the command line to

flash the binary.

Ubuntu directory structure:

• SDK_Ubuntu<version>
— eclipse—Eclipse application.
— openocd—OpenOCD debugger.
— riscv-xpack-toolchain_8.3.0-1.1_linux—GCC compiler.
— run_eclipse.sh—Shell file that sets variables and launches Eclipse.
— setup.sh—Shell file to set variables for running OpenOCD on the command line to

flash the binary.

Install the Java JRE
To install the JRE:

1. Download the 64-bit version of the JRE or JDK for your operating system from
https://www.java.com/en/download/manual.jsp (Java 8 official release)
https://developers.redhat.com/products/openjdk/download (OpenJDK 8 or 11)
http://jdk.java.net/16/ (OpenJDK 16)

2. Follow the installation instructions on the web site to install the JRE.

Note: You need a 64-bit version of the Java JRE. If you use a 32-bit version, when you try to launch Eclipse
you will get an error that Java quit with exit code 13.

Installing USB Drivers
Efinix development boards have FTDI chips (FT232H, FT2232H, or FT4232H) to
communicate with the USB port and other interfaces such as SPI, JTAG, or UART. These
chips have separate channels for each interface. If you install a driver for each interface, each

www.efinixinc.com 7

https://www.java.com/en/download/manual.jsp
https://developers.redhat.com/products/openjdk/download
http://jdk.java.net/16/

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

interface appears as a unique FTDI device. If you install a composite driver, all of the separate
interfaces appear as a single composite device.

If you have not already done so, install separate interface drivers for the
Xyloni Development Board. When working with OpenOCD, you need to install the
libusbK driver as described in the following section.

Note: If you already installed the libusb-win32 driver and want to use OpenOCD, uninstall libusb-win32
and install libusbK instead.

Separate Interfaces
You install drivers for separate interfaces when you want to use each interface independently.

Important: For some Efinix development boards, Windows automatically installs
drivers for some interfaces when you connect the board to your computer. You do
not need to install another driver for these interfaces. Refer to the user guide for your
development board for specific driver installation requirements.

1. Connect the board to your computer with the appropriate cable and power it up.
2. Download the Zadig software from zadig.akeo.ie. (You do not need to install it; simply

run the downloaded executable.)
3. Run the Zadig software.

Note: To ensure that the USB driver is persistent across user sessions, run the
Zadig software as administrator.

4. Choose Options > List All Devices.
5. Repeat the following steps for each interface. The interface names end with (Interface N),

where N is the channel number.
• Select libusb-win32 or libusbK in the Driver drop-down list. (Do not choose

WinUSB.)
• Click Replace Driver.

6. Close the Zadig software.

Installing Drivers on Linux

The following instructions explain how to install a USB driver for Linux operating systems.

1. Disconnect your board from your computer.
2. In a terminal, use these commands:

> sudo <installation directory>/bin/install_usb_driver.sh
> sudo udevadm control --reload-rules

Note: If your board was connected to your computer before you executed these
commands, you need to disconnect and re-connect it.

www.efinixinc.com 8

https://zadig.akeo.ie

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Chapter 2

About the RTL Example Design

Efinix® preloads the Xyloni Development Board with an example design and firmware. The
design includes two functions, the invert LED operation and the read SD card information
operation. The read SD card information operation requires a terminal program in a
computer and an SD card inserted into the SD card slot to display the SD card information.

Figure 2: Xyloni Development Board Example Design Block Diagram

Xyloni Development Board

FTDI UART
Interface

BTN1 and
BTN2

PushbuttonsSPI
Interface

LED1, LED2,
LED3 & LED4

T8 FPGA

Terminal

SD Card

Opal RISC-V SoC

GPIO

CRST
Pushbutton

Learn more: Refer to Xyloni_SelfTest Example on page 28 for information on running the design.

In addition to the default firmware, you can run other example software as described in
Example Software on page 25. You can use the pre-loaded example design to run this
other example software without making any RTL changes.

www.efinixinc.com 9

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Chapter 3

Launch Eclipse
Contents:

• Set Global Environment Variables

The RISC-V SDK includes the run_eclipse.bat file (Windows) or run_eclipse.sh file
(Linux) that adds executables to your path, sets up envonment variables for the Opal BSP,
and launches Eclipse. Always use this executable to launch Eclipse; do not launch Eclipse
directly.

When you first start working with the Opal SoC, you need to configure your Eclipse
workspace and environment. Setting up a global development environment for your
workspace means you can store all of your Opal software code in the same place and you can
set global environment variables that apply to all software projects in your workspace.

You should use a unique workspace for your Opal SoC projects. Efinix recommends using
the soc_Opal_t8 directory as the workspace directory.

Follow these steps to launch Eclipse and set up your workspace:

1. Launch Eclipse using the run_eclipse.bat file (Windows) or run_eclipse.sh file.
2. The launch script prompts you to select your SoC. Type 4 for Opal_T8 and press enter.
3. If this is the first time you are running Eclipse, create a new workspace that points to the

soc_Opal_sw_t8 directory. Otherwise, choose File > Switch Workspace > Other to
choose an existing workspace directory and click Launch.

Set Global Environment Variables
You need to set two environment variables for OpenOCD. It is simplest to set them as global
environment variables for all projects in your workspace. Then, you can adjust them as
needed for individual projects.

Choose Window > Preferences to open the Preferences window and perform the following
steps.

a

c

d

b

1. In the left navigation menu, expand C/C++ > Build.
2. Click C/C++ > Build > Environment.

www.efinixinc.com 10

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

3. Click Add and add the following environment variables:

Variable Value Description

DEBUG no Enables or disables debug mode.
no: Debugging is turned off
yes: Debugging is enabled

DEBUG_OG no Enables or disables optimization during debugging.
Use an uppercase letter O not a zero.

4. Click Apply and Close.

www.efinixinc.com 11

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Chapter 4

Create and Build a Software Project
Contents:

• Create a New Project
• Import Project Settings (Optional)
• Enable Debugging
• Build

After you set up your Eclipse workspace, you are ready to create a new project and build
it. These instructions walk you through the process using the EfxApb3Example example
project from the software directory.

Create a New Project
In this step you create a new project from the EfxApb3Example code example.

1. Launch Eclipse.
2. Select the Opal workspace if it is not open by default.
3. Make sure you are in the C/C++ perspective.
Import the EfxApb3Example example:
4. Choose File > New > Makefile Project with Existing Code.
5. Click Browse next to Existing Code Location.
6. Browse to the software/standalone/EfxApb3Example directory and click Select Folder.
7. Select <none> in the Toolchain for Indexer Settings box.
8. Click Finish.

www.efinixinc.com 12

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Import Project Settings (Optional)
Efinix provides a C/C++ project settings file that defines the include paths and symbols for
the C code. Importing these settings into your project lets you explore and jump through the
code easily.

Note: You are not required to import the project settings to build. These settings simply make it easier for
you to write and debug code.

To import the settings:

1. Choose File > Import to open the Import wizard.
2. Expand C/C++.
3. Choose C/C++ > C/C++ Project Settings.
4. Click Next.
5. Click Browse next to the Settings file box.
6. Browse to one of the following files and click Open:

Option Description

Windows soc_Opal_t8\soc_Opal_sw_t8\config\project_settings_opal.xml

Linux soc_Opal_t8/soc_Opal_sw_t8/config_linux/
project_settings_opal_linux.xml

7. In the Select Project box, select the project name(s) for which you want to import the
settings.

8. Click Finish.

www.efinixinc.com 13

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Eclipse creates a new folder in your project named Includes, which contains all of the files
the project uses.

After you import the settings, clean your project (Project > Clean) and then build (Project
> Build Project). The build process indexes all of the files so they are linked in your project.

Enable Debugging
When you set up your workspace, you defined an environment variable for debugging with a
default value of no.
• To run the program for normal operation, keep DEBUG set to no.
• To debug with the OpenOCD debugger, set DEBUG to yes.

In debug mode, the program suspends operation after loading so that you can set breakpoints
or perform debug tasks.

To change the debug settings for your project, right-click the project name
EfxApb3Example in the Project Explorer and choose Properties from the pop-up menu.

1. Expand C/C++ Build.
2. Click C/C++ Build > Environment.
3. Click the Debug variable.
4. Click Edit.
5. Change the Value to yes.
6. Click OK.
7. Click Apply and Close.

Important: When you change the debug value for a project you previously built, you must clean the
project (Project > Clean) before building again. Otherwise, Eclipse gives a message in the Console that
there is Nothing to be done for 'all'

www.efinixinc.com 14

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Build
Choose Project > Build Project or click the Build Project toolbar button.

The makefile builds the project and generates these files in the build directory:
• EfxApb3Example.asm—Assembly language file for the firmware.
• EfxApb3Example.bin—Download this file to the flash device on your board using

OpenOCD. When you turn the board on, the SoC loads the application into the RISC-V
processor and executes it.

• EfxApb3Example.elf—Use this file when debugging with the OpenOCD debugger.
• EfxApb3Example.hex—Hex file for the firmware. (Do not use it to program the

FPGA.)
• EfxApb3Example.map—Contains the SoC address map.

www.efinixinc.com 15

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Chapter 5

Debug with the OpenOCD Debugger
Contents:

• Import the Debug Configuration
• Debug
• Enable Telnet on Windows
• Open a Terminal

With the Xyloni Development Board programmed and the software built, you are ready
to configure the OpenOCD debugger and perform debugging. These instructions use the
EfxApb3Example example to explain the steps required.

Import the Debug Configuration
To simplify the debugging steps, the Opal SoC includes a debug configuration that you
import.

Note: If you have already imported the launch configuration described in Import the Run Configuration,
you only need to perform steps 7 and 12 to debug.

1. Right-click the EfxApb3Example project name and choose Import.
2. In the Import dialog box, choose Run/Debug > Launch Configurations.
3. Click Next. The Import Launch Configurations dialog box opens.
4. Browse to the following directory and click OK:

Option Description

Windows soc_Opal_t8\embedded_sw\soc_Opal_sw_t8\config

Linux soc_Opal_t8/embedded_sw/soc_Opal_sw_t8/config_linux

5. Check the box next to config (Windows) or config_linux (Linux).
6. Click Finish.
7. Right-click the EfxApb3Example project name and choose Debug As > Debug

Configurations.
8. Choose GDB OpenOCD Debugging > default (Trion FPGAs) or default_ti (Titanium

FPGAs).
9. Enter EfxApb3Example in the Project box.
10. Enter build\EfxApb3Example.elf in the C/C++ Application box.
11. Windows only: you need to change the path to the cpu0.yaml file:

a. Click the Debugger tab.
b. In the Config options box, change ${workspace_loc} to the full path to the

soc_Opal_sw_t8 directory.

Note: For the cpu0.yaml path, make sure to use \\ as the directory separator
because the first slash escapes the second one. For example, use:
c:\\riscv\\soc_Opal_t8\\soc_Opal_sw_t8\\cpu0.yaml

www.efinixinc.com 16

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

12. Click Debug.

Note: When you click Debug, the debugger sends a soft reset to the SoC, and
then writes the user binary file to logical address 0x0000_1000, which is the
starting address of the external memory. The Ruby Vision SoC then jumps to logical
address 0x0000_1000 to execute the user binary.

Note: If Eclipse prompts you to switch to the Debug Perspective, click Switch.

Debug
After you click Debug in the Debug Configuration window, the OpenOCD server starts,
connects to the target, starts the gdb client, downloads the application, and starts the
debugging session. Messages and a list of VexRiscv registers display in the Console. The
main.c file opens so you can debug each step.

1. Click the Resume button or press F8 to resume code operation. All of the LEDs on the
board blink continuously in unison.

2. Click Step Over (F6) to do a single step over one source instruction.
3. Click Step Into (F5) to do a single step into the next function called.
4. Click Step Return (F7) to do a single step out of the current function.
5. Double-click in the bar to the left of the source code to set a breakpoint. Double-click a

breakpoint to remove it.
6. Click the Registers tab to inspect the processor's registers.
7. Click the Memory tab to inspect the memory contents.
8. Click the Suspend button to stop the code operation.
9. When you finish debugging, click Terminate to disconnect the OpenOCD debugger.

The EfxApb3Example example blinks the LEDs and prints messages on a UART terminal.
Refer to Enable Telnet on Windows on page 18 and Open a Terminal on page 19
for more instructions on setting up a terminal.

www.efinixinc.com 17

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Figure 3: Perform Debugging

Learn more: For more information on debugging with Eclipse, refer to Running and debugging projects
in the Eclipse documentation.

Enable Telnet on Windows
Windows does not have telnet turned on by default. Follow these instructions to enable it:

1. Type telnet in the Windows search box.
2. Click Turn Windows features on or off (Control panel). The Windows Features dialog

box opens.
3. Scroll down to Telnet Client and click the checkbox.
4. Click OK. Windows enables telnet.
5. Click Close.

www.efinixinc.com 18

https://help.eclipse.org/2020-03/index.jsp?topic=%2Forg.eclipse.cdt.doc.user%2Ftasks%2Fcdt_t_debug_prog.htm

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Open a Terminal
You can use any terminal program, such as Putty, termite, or the built-in Eclipse terminal, to
connect to the UART. These instructions explain how to use the Eclipse terminal; the others
are similar.

1. In Eclipse, choose Window > Show View > Terminal. The Terminal tab opens.
Open a Terminal
Disconnect Terminal Connection

2. Click the Open a Terminal button.
3. In the Launch Terminal dialog box, enter these settings:

Option Setting

Choose terminal Serial Terminal

Serial port COMn (Windows) or ttyUSBn (Linux)
where n is the port number for your UART module.

Baud rate 115200

Data size 8

Parity None

Stop bits 1

Encoding Default (ISO-8859-1)

4. Click OK. The terminal opens a connection to the UART.
5. Run your application. Messages are printed in the terminal.
6. When you are finished using the application, click the Disconnect Terminal Connection

button.

www.efinixinc.com 19

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Chapter 6

Create Your Own RTL Design
Contents:

• Create a Custom APB3 Peripheral
• Remove Unused Peripherals from the RTL Design

After you have explored the Opal SoC using the included example Efinity® project, you can
use these tips to modify the design for your own use.

Note: Efinix recommends that you use the provided example design project as a starting point instead of
creating a new project.

Create a Custom APB3 Peripheral
This simple APB3 peripheral example shows how to implement an APB3 slave wrapper.

• Refer to apb3_slave.v in the Xyloni_kit directory for the RTL design.
• Refer to main.c in the soc_Opal_t8/soc_Opal_sw_t8/software/standalone/

EfxApb3Example/src directory for the C code.

Remove Unused Peripherals from the RTL
Design
The Opal SoC includes a variety of peripherals. if you do not want to use a peripheral,
simply remove the signal name from within the parentheses () in the OpalSoc OpalSoc_inst
definition in the top-level Verilog HDL file. For example, the SoC instantiation has these
signals:

.system_i2c_0_io_sda_write (system_i2c_0_io_sda_write),

.system_i2c_0_io_sda_read (system_i2c_0_io_sda_read),

.system_i2c_0_io_scl_write (system_i2c_0_io_scl_write),

.system_i2c_0_io_scl_read (system_i2c_0_io_scl_read),

To disable I2C 0, remove the signal name in () as shown below:

.system_i2c_0_io_sda_write (),

.system_i2c_0_io_sda_read (),

.system_i2c_0_io_scl_write (),

.system_i2c_0_io_scl_read (),

www.efinixinc.com 20

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Chapter 7

Create Your Own Software
Contents:

• Deploying an Application Binary
• About the Board Specific Package
• Address Map
• Example Software

Now that you have explored the methodology for designing with the Opal SoC, you can
develop your own software applications.

Note: The Opal SoC does not currently support floating point calculations, such as sine and cosine.

Deploying an Application Binary
During normal operation, the user binary application file (.bin) is stored in a SPI flash device.
When the FPGA powers up, the Opal SoC copies your binary application file from the SPI
flash device to the on-chip memory, and then begins execution.

For debugging, you can load the user binary (.elf) directly into the Opal SoC using the
OpenOCD Debugger. After loading, the binary executes immediately.

Note: The settings in the linker prevent user access to the on-chip RAM address. This setting allows the
embedded bootloader to work properly during a system reset after the user binary is executed but the
FPGA is not reconfigured.

Boot from a Flash Device
When the FPGA boots up, the Opal SoC copies your binary application file from a SPI flash
device to the on-chip memory, and then begins execution. The SPI flash binary address starts
at 0x00E_0000.

To boot from a SPI flash device:

1. Power up your board. The FPGA loads the configuration image from the on-board flash
device.

2. When configuration completes, the bootloader begins cloning a 4 KByte user binary file
from the flash device at physical address 0x00E_0000 to the on-chip memory.

Note: It takes ~10 ms to clone a 4 KByte user binary (this is the default size).

3. The Opal SoC executes the user binary.

Boot from the OpenOCD Debugger
To boot from the OpenOCD debugger:

1. Power up your board. The FPGA loads the configuration image from the on-board flash
device.

2. Launch Eclipse and set up the debug environment for your project.

www.efinixinc.com 21

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

3. When you click Debug, the debugger sends a soft reset to the SoC, and then writes the
user binary file to logical address 0xF900_0000, which is the starting address of the on-chip
memory.

4. The Opal SoC jumps to logical address 0xF900_0000 to execute the user binary.
5. The user binary is suspended on boot up. Click the Resume button to start the program.

Note: Refer to Debug with the OpenOCD Debugger for complete instructions on debugging.

Copy a User Binary to the Flash Device
To boot from a flash device, you need to copy the binary to the device. These instructions
describe how to use a command prompt or shell to flash the user binary file. You use two
command prompts or shells:
• The first terminal opens an OpenOCD connection to the SoC.
• The second connects to the first terminal to write to the flash.

Important: If you are using the OpenOCD debugger in Eclipse, terminate any debug processes before
attempting to flash the memory.

Set Up Terminal 1
1. Open a Windows command prompt or Linux shell.
2. Change to SDK_Windows or SDK_Ubuntu.
3. Execute the setup.bat (Windows) or setup.sh (Linux) script.
4. Change to the directory that has the cpu0.yaml file.
5. Type the following commands to set up the OpenOCD server:

Windows (Trion):

openocd.exe -f bsp\efinix\EfxOpalSoc\openocd\ftdi.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp\efinix\EfxOpalSoc\openocd\flash.cfg

Windows (Titanium):

openocd.exe -f bsp\efinix\EfxOpalSoc\openocd\ftdi_ti.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp\efinix\EfxOpalSoc\openocd\flash_ti.cfg

Linux (Trion):

openocd -f bsp/efinix/EfxOpalSoc/openocd/ftdi.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp/efinix/EfxOpalSoc/openocd/flash.cfg

Linux (Titanium):

openocd -f bsp/efinix/EfxOpalSoc/openocd/ftdi_ti.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp/efinix/EfxOpalSoc/openocd/flash_ti.cfg

The OpenOCD server connects and begins listening on port 4444.

Set Up Terminal 2
1. Open a second command prompt or shell.
2. Enable telnet if it is not turned on. Turn on telnet (Windows)
3. Open a telnet local host on port 4444 with the command telnet localhost 4444.

www.efinixinc.com 22

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

4. In the OpenOCD shell or command prompt, use the following command to flash the user
binary file:

flash write_image erase unlock <path>/<filename>.bin 0x380000

Where <path> is the full, absolute path to the .bin file.

Note: For Windows, use \\ as the directory separators.

Close Terminals
When you finish:
• Type exit in terminal 2 to close the telnet session.
• Type Ctrl+C in terminal 1 to close the OpenOCD session.

Important: OpenOCD cannot be running in Eclipse when you are using it in a terminal. If you try to run
both at the same time, the application will crash or hang. Always close the terminals when you are done
flashing the binary.

Reset the FPGA
Press the reset button (CRST) on the development board.

About the Board Specific Package
The board specific package (BSP) defines the address map and aligns with the Opal SoC
hardware address map. The BSP files are located in the bsp/efinix/EfxOpalSoC_t8
subdirectory.

Table 1: BSP Files

File or Directory Description

app Files used by the example software and bootloader.

include\soc.mk Supported instruction set.

include\soc.h Defines the system frequency and address map.

linker\default.ld Linker script for the main memory address and size.

linker\bootloader.ld Linker script for the bootloader address and size.

openocd OpenOCD configuration files.

www.efinixinc.com 23

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Address Map
Note: Because the address range might be updated, Efinix recommends that you always refer to the
parameter name when referencing an address in firmware, not by the actual address. The parameter
names and address mappings are defined in soc.h.

Table 2: Default Address Map, Interrupt ID, and Cached Channels

Device Parameter Size Interrupt ID Region

GPIO SYSTEM_GPIO_0_IO_APB 4K [0]: 12
[1]: 13

I/O

I2C SYSTEM_I2C_0_IO_APB 4K 8 I/O

Machine timer SYSTEM_MACHINE_TIMER_APB 4K 31 I/O

PLIC SYSTEM_PLIC_APB 4K – I/O

SPI master 0 SYSTEM_SPI_0_IO_APB 4K 4 I/O

SPI master 1(2) SYSTEM_SPI_1_IO_APB 4K 5 I/O

UART SYSTEM_UART_0_IO_APB 4K 1 I/O

User peripheral IO_APB_SLAVE_0_APB 64K – I/O

On-chip BRAM SYSTEM_RAM_A_BMB 4 KB – Cache

External interrupt – – 25 I/O

Note: The RISC-V GCC compiler does not support user address spaces starting at 0x0000_0000.

(2) The open-source Opal SoC available on Github has 2 SPI masters. Other variations only have 1.

www.efinixinc.com 24

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Example Software
To help you get started writing software for the Opal, Efinix provides a variety of example
software code that performs functions such as communicating through the UART,
controlling GPIO interrupts, etc. Each example includes a makefile and src directory that
contains the source code.

Note: Many of these examples display messages on a UART. The Xyloni Development Board has an on-
board UART module, and you can connect to it with a terminal program.
Learn how to open an Eclipse terminal and connect to the UART.

Table 3: Example Software Code

Directory Description

blinkAndEcho This example blinks an LED and prints a string on the UART
terminal.

bootloader This software is the bootloader for the system.

common Provides linking for the makefiles.

driver This directory contains the system drivers for the peripherals
(I2C, UART, SPI, etc.). Refer to API Reference on page 32 for
details.

EfxApb3Example This example shows how to implement an ABP3 slave.

i2cDemo This example shows how to connect to an MCP4725 digital-to-
analog converter (DAC) using an I2C peripheral.

readFlash This example shows how to read from a SPI flash device.

spiDemo This code reads the device ID and JEDEC ID of a SPI flash
device and echoes the characters on a UART.

timerAndGpioInterruptDemo This example shows how to use use interrupts with a timer and
GPIO.

userInterruptDemo This example demonstrates user interrupts with UART
messages.

writeFlash This example shows how to write to a SPI flash device.

Xyloni_SelfTest This software is pre-loaded onto the Xyloni development
board.

www.efinixinc.com 25

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

blinkAndEcho Example
The blink and echo example (blinkAndEcho directory) is a simple example that shows how
to use a register pointer to output data for the GPIO and UART. The application blinks
LEDs on the Xyloni Development Board. When you type a character, it echoes it on a
UART terminal.

EfxApb3Example
This simple software design illustrates how to use an APB3 slave peripheral. The RISC-V
processor controls the first 2 bits of address 0xf8800000; these 2 bits are connected to the
Xyloni Development Board's LEDs. When the processor writes a 1, all of the LEDs turn
on; for a 0, all of them turn off. The application also displays the message Opal Soc T8:
Example Design on a UART terminal.

i2cDemo Example
The I2C interrupt example (i2cDemo directory) provides example code for an I2C master
writing data to and reading data from an off-chip MCP4725 device with interrupt. The
Microchip MCP4725 device is a single channel, 12-bit, voltage output digital-to-analog
converter (DAC) with an I2C interface.

The MCP4725 device is available on breakout boards from vendors such as Adafruit and
SparkFun. You can connect the breakout board's SDA and SCL pins to a development board.

• SCL—GPIOR_35, which is pin 17 on header J1
• SDA—GPIOR_36, which is pin 18 on header J1

The code assumes that the I2C block is the only master on the bus, and it sends frames in
blocks. When you run it, the application connects to the MCP4725 device and increases the
DAC value. It also prints the message Start on a UART terminal.

In this example:
• void trap() traps entries on exceptions and interrupt events
• void externalInterrupt() triggers an interrupt event

readFlash Example
The read flash example (readFlash directory) shows how to read data from the SPI flash
device on the development board. The software reads 124K of data starting at address
0xe0000, which is the default location of the user binary in the flash device. The application
displays messages on a UART terminal:

Read Flash Start
Addr 00380000 : =FF
Addr 00380001 : =FF
Addr 00380002 : =FF
...
Addr 0039EFFE : =FF
Addr 0039EFFF : =FF
Read Flash End

www.efinixinc.com 26

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

spiDemo Example
The SPI example (spiDemo directory) provides example code for reading the device ID and
JEDEC ID of the SPI flash device on the development board.
• The default base address map of the SPI flash master is 0xF801_4000.
• The default SCK frequency is half of the SoC system clock frequency.
• The default base address of the UART is 0xF801_0000 with a default baud rate of 115200.

The application displays the results on a UART terminal. It continues to print to the
terminal until you suspend or stop the application.

Hello world
Device ID : 17
CMD 0x9F : EF4018
CMD 0x9F : EF4018
...

timerAndGpioInterruptDemo Example
The GPIO interrupt example (timerAndGpioInterruptDemo directory) provides example
code for implementing a rising edge interrupt trigger with a GPIO pin. When an interrupt
occurs, a UART terminal displays Hello world and then the timer interval. It continues to
print the timer interval until you suspend or stop the application.

Hello world
BSP_MACHINE_TIMER 0
BSP_MACHINE_TIMER 1
...

In this example:
• void trap() traps entries on exceptions and interrupt events
• void externalInterrupt() triggers a GPIO interrupt event

userInterruptDemo Example
The user interrupt example (userInterruptDemo directory) uses one bit from an APB3 slave
peripheral as an interrupt signal to RISC-V processor. The main routine sets up an interrupt
routine, then triggers an interrupt signal to the user interrupt port by programming bit 2 on
the ABP3 slave to high.

When the RISC-V processor receives the interrupt signal, program execution jumps from the
main routine to the interrupt (or priority) routine. The interrupt routine sets bit 2 low so the
processor can leave the interrupt routine.

The application displays the messages on a UART terminal:

User Interrupt Demo, waiting for user interrupt...
Entered User Interrupt Routine
Turn off Interrupt Signal
Leaving User Interrupt Routine

www.efinixinc.com 27

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

writeFlash Example
The read flash example (writeFlash directory) shows how to write data to the SPI flash
device on the development board. The software writes data starting at address 0xe0000, which
is the default location of the user binary in the flash device. The application displays address
and data messages on a UART terminal:

Write Flash Start
WR Addr 00380000 : =00
WR Addr 00380001 : =01
WR Addr 00380002 : =02
...
WR Addr 003800FD : =FD
WR Addr 003800FE : =FE
WR Addr 003800FF : =FF
Write Flash End

Xyloni_SelfTest Example
This example is pre-loaded into the Xyloni Development Board. The design has two
operations:

• Invert LED—Reverses the direction of the LED blinking pattern when you press BTN2.
• Read SD card—Press BTN1 to start the test. Then press Enter and the software reads

information about the inserted SD card and displays it on a UART terminal.

Refer to the Xyloni Development Kit User Guide for detailed instructions on running the
example.

Important: You cannot use Debug mode in OpenOCD because there is insufficient on-chip user memory
for this design. Instead, run the program for normal operation, and set the DEBUG variable to no. See
Enable Debugging on page 14.

www.efinixinc.com 28

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=XYLONI-DK-UG

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Chapter 8

Troubleshooting
Contents:

• Error 0x80010135: Path too long (Windows)
• OpenOCD Error: timed out while waiting for target halted
• OpenOCD error code (-1073741515)
• OpenOCD Error: no device found
• OpenOCD Error: failed to reset FTDI device: LIBUSB_ERROR_IO
• OpenOCD Error: target 'fpga_spinal.cpu0' init failed
• Eclipse Fails to Launch with Exit Code 13
• Undefined Reference to 'cosf'

Error 0x80010135: Path too long (Windows)
When you unzip the SDK on Windows, you may get the error message:

An unuexpected error is keeping you from copying the file. If you continue
to receive this error, you can use the error code to search for help with
this problem.

Error 0x80010135: Path too long

This error occurs if you try to unzip the SDK files into a deep folder hierarchy instead of one
that is close to the root level. Instead unzip to c:\riscv-sdk.

OpenOCD Error: timed out while waiting for
target halted
The OpenOCD debugger console may display this error when:
• There is a bad contact between the FPGA header pins and the programming cable.
• The FPGA is not configured with a SoC design.
• You may not have the correct PLL settings to work with the SoC.
• Your computer does not have enough memory to run the program.

To solve this problem:
• Make sure that all of the cables are securly connected to the board and your computer.
• Check the JTAG connection.
• If you programmed the Xyloni Development Board with another design, you need to

restore it with the example design.

www.efinixinc.com 29

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

OpenOCD error code (-1073741515)
The OpenOCD debugger may fail with error code -1073741515 if your system does not
have the libusb0.dll installed. To fix this problem, install the DLL. This issue only affects
Windows systems.

OpenOCD Error: no device found
The FTDI driver included with the Opal SoC specifies the FTDI device VID and PID, and
board description. In some cases, an early revision of the Efinix development board may have
a different name than the one given in the driver file. If the board name does not match the
name in the driver, OpenOCD will fail with an error similar to the following:

Error: no device found
Error: unable to open ftdi device with vid 0403, pid 6010, description 'Trion T20 Development
 Board', serial '*' at bus location '*'

To fix this problem, follow these steps with the development board attached to the computer:

1. Open the Efinity Programmer.
2. Click the Refresh USB Targets button to display the board name in the USB Target

drop-down list.
3. Make note of the board name.
4. In a text editor, open the ftdi.cfg (Trion) or ftdi_ti.cfg (Titanium) file in the /bsp/

efinix/EFXOpalSoC/openocd directory.
5. Change the ftdi_device_desc setting to match your board name. For example,

use this code to change the name from Trion T20 Development Board to Trion T20
Developer Board:

interface ftdi
ftdi_device_desc "Trion T20 Developer Board"
#ftdi_device_desc "Trion T20 Development Board"
ftdi_vid_pid 0x0403 0x6010

6. Save the file.
7. Debug as usual in OpenOCD.

OpenOCD Error: failed to reset FTDI device:
LIBUSB_ERROR_IO
This error is typically caused because you have the wrong Windows USB driver for the
development board. If you hav e the wrong driver, you will get an error similar to:

Error: failed to reset FTDI device: LIBUSB_ERROR_IO
Error: unable to open ftdi device with vid 0403, pid 6010, description
'Trion T20 Development Board', serial '*' at bus location '*'

Important: Efinix recommends using the libusbK driver, which you install using the Zadig software. See
Installing USB Drivers for information.

www.efinixinc.com 30

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

OpenOCD Error: target 'fpga_spinal.cpu0' init
failed
You may receive this error when trying to debug after creating your OpenOCD debug
configuration. The Eclipse Console gives an error message similar to:

Error cpuConfigFile C:RiscVsoc_Jadesoc_jade_swcpu0.yaml not found
Error: target 'fpga_spinal.cpu0' init failed

This error occurs because the path to the cpu0.yaml file is incorrect, specifically the slashes
for the directory separators. You should use:
• a single forward slash (/)
• 2 backslashes (\\)

For example, either of the following are good:

C:\\RiscV\\soc_Jade\\soc_jade_sw\\cpu0.yaml
C:/RiscV/soc_Jade/soc_jade_sw/cpu0.yaml

Eclipse Fails to Launch with Exit Code 13
The Eclipse software requires a 64-bit version of the Java JRE. If you use a 32-bit version,
when you try to launch Eclipse you will get an error that Java quit with exit code 13.

If you are downloading the JRE using a web browser from www.java.com, it defaults to
getting the 32-bit version. Instead, go to https://www.java.com/en/download/manual.jsp
to download the 64-bit version.

Undefined Reference to 'cosf'
You may receive an error similar to this when using calculating square root, sine, or cosine
with floating-point numbers in your application. The Opal SoC does not currently support
floating point.

www.efinixinc.com 31

http://www.java.com
https://www.java.com/en/download/manual.jsp

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Chapter 9

API Reference
Contents:

• Control and Status Registers
• GPIO API Calls
• I2C API Calls
• I/O API Calls
• Machine Timer API Calls
• PLIC API Calls
• SPI API Calls
• SPI Flash Memory API Calls
• UART API Calls
• Handling Interrupts

The following sections describe the API for the code in the driver directory.

Control and Status Registers
csr_clear()

Usage csr_clear(csr, val)

Include driver/riscv.h

Description Clear a CSR.

csr_read()

Usage csr_read(csr)

Include driver/riscv.h

Description Read from a CSR.

Example csrr (t0, mepc) // Write mepc in regfile[t0]

csr_read_clear()

Usage csr_read_clear(csr, val)

Include driver/riscv.h

Description CSR read and clear bit.

csr_read_set()

Usage csr_read_set(csr, val)

Include driver/riscv.h

Description CSR read and set bit.

www.efinixinc.com 32

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

csr_set()

Usage csr_set(csr, val)

Include driver/riscv.h

Description CSR set bit.

csr_swap()

Usage csr_write(csr, val)

Include driver/riscv.h

Description Swaps values in the CSR.

csr_write()

Usage csr_write(csr, val)

Include driver/riscv.h

Description Write to a CSR.

Example csrw (mepc, t0); // Write regfile[t0] in mepc

GPIO API Calls
gpio_getFilteringHit()

Usage gpio_getFilteringHit(reg)

Parameters [IN] reg struct of I2C setting value

Include driver/i2c.h

Description Read the 32-bit I2C register filter hit with a call back function.

Example
if(gpio_getFilteringHit(I2C_CTRL) == 1)
// Check filter hit value, bit [7] from slave address,
// read =’1’ write =’0’

gpio_getFilteringStatus()

Usage gpio_getFilteringStatus(reg)

Parameters [IN] reg struct of I2C setting value

Include driver/i2c.h

Description Read the 32-bit I2C register filter hit with a call back function.

Example
if(gpio_getFilteringStatus (I2C_CTRL) == 1)
// Check filter hit status, bit [7] from slave address, read =’1’
 write =’0

www.efinixinc.com 33

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

gpio_getInput()

Usage gpio_getInput(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Get input from a GPIO.

gpio_getInterruptFlag()

Usage gpio_getInterruptFlag(reg)

Parameters [IN] reg struct of I2C setting value

Include driver/i2c.h

Description Read the 32-bit I2C register interrupt flag with a call back function.

Example
Int flag = gpio_getInterruptFlag(I2C_CTRL) & I2C_INTERRUPT_DROP;
// Get Drop interrupt flag from Interrupt register
//[2] I2C_INTERRUPT_TX_DATA
//[3] I2C_INTERRUPT_TX_ACK
//[7] I2C_INTERRUPT_DROP
//[16] I2C_INTERRUPT_CLOCK_GEN_BUSY
//[17] I2C_INTERRUPT_FILTER

gpio_getMasterStatus()

Usage gpio_getMasterStatus(reg)

Parameters [IN] reg struct of I2C setting value

Include driver/i2c.h

Description Read the 32-bit I2C register master status with a call back function.

Example
int status = gpio_getMasterStatus(I2C_CTRL) & I2C_MASTER_BUSY;
// Get master busy status from status register
[0]I2C_MASTER_BUSY
[4]I2C_MASTER_START
[5]I2C_MASTER_STOP
[6]I2C_MASTER_DROP

gpio_getOutput()

Usage gpio_getOutput(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Read the output pin.

www.efinixinc.com 34

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

gpio_getOutputEnable()

Usage gpio_getOutputEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Read GPIO output enable.

gpio_setOutput()

Usage gpio_setOutput(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set GPIO as 1 or 0.

gpio_setOutputEnable()

Usage gpio_setOutputEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set GPIO as an output enable.

gpio_setInterruptRiseEnable()

Usage gpio_etInterruptRiseEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set an interrupt on the rising edge of the GPIO.

gpio_setInterruptFallEnable()

Usage gpio_setInterruptFallEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set an interrupt on the falling edge of the GPIO.

gpio_setInterruptHighEnable()

Usage gpio_setInterruptHighEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set an interrupt when the GPIO is high.

www.efinixinc.com 35

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

gpio_setInterruptLowEnable()

Usage gpio_setInterruptLowEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set an interrupt when the GPIO is low.

www.efinixinc.com 36

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

I2C API Calls
i2c_applyConfig()

Usage void i2c_applyConfig(u32 reg, I2c_Config *config)

Parameters [IN] reg struct of I2C setting value
[IN] config struct of I2C configuration

Include driver/i2c.h

Description Apply I2C configuration to register or for initial configuration.

i2c_clearInterruptFlag()

Usage void i2c_clearInterruptFlag(u32 reg, u32 value)

Parameters [IN] reg struct of I2C setting value
[IN] value I2C interrupt register

Include driver/i2c.h

Description Clear the I2C interrupt flag.

i2c_disableInterrupt()

Usage void i2c_disableInterrupt(u32 reg, u32 value)

Parameters [IN] reg struct of I2C setting value
[IN] value I2C interrupt register:
• [2] I2C_INTERRUPT_TX_DATA
• [3] I2C_INTERRUPT_TX_ACK
• [7] I2C_INTERRUPT_DROP
• [16] I2C_INTERRUPT_CLOCK_GEN_BUSY
• [17] I2C_INTERRUPT_FILTER

Include driver/i2c.h

Description Disable I2C interrupt.

Example
i2c_disableInterrupt(I2C_CTRL, I2C_INTERRUPT_TX_ACK);
// Enable I2C interrupt with interrupt TX Ack

www.efinixinc.com 37

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

i2c_enableInterrupt()

Usage void i2c_enableInterrupt(u32 reg, u32 value)

Parameters [IN] reg struct of I2C setting value
[IN] value I2C interrupt register:
• [2] I2C_INTERRUPT_TX_DATA
• [3] I2C_INTERRUPT_TX_ACK
• [7] I2C_INTERRUPT_DROP
• [16] I2C_INTERRUPT_CLOCK_GEN_BUSY
• [17] I2C_INTERRUPT_FILTER

Include driver/i2c.h

Description Enable I2C interrupt.

Example
i2c_enableInterrupt(I2C_CTRL, I2C_INTERRUPT_FILTER |
 I2C_INTERRUPT_DROP);
// Enable I2C interrupt with interrupt filter and drop

i2c_filterEnable()

Usage void i2c_filterEnable(u32 reg, u32 filterId, u32 config)

Parameters [IN] reg struct of I2C setting value
[IN] filterID filter configuration ID number
[IN] config struct of I2C configuration

Include driver/i2c.h

Description Enable the filter configuration.

i2c_listenAck()

Usage void i2c_listenAck(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Listen acknowledge from the slave.

i2c_masterBusy()

Usage void i2c_masterBusy(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Get the I2C busy status.

i2c_masterDrop()

Usage void i2c_masterDrop(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Change the I2C master to the drop state.

Example i2c_masterDrop(I2C_CTRL);

www.efinixinc.com 38

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

i2c_masterStart()

Usage void i2c_masterStart(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Change the I2C master to the start status.

i2c_masterStartBlocking()

Usage void i2c_masterStartBlocking(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Asserts a start condition.

i2c_masterStop()

Usage void i2c_masterStop(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Change the I2C master to the stop status.

i2c_masterStopBlocking()

Usage void i2c_masterStartBlocking(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Asserts a stop condition.

i2c_masterStopWait()

Usage void i2c_masterStopWait(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description The stop condition is wait busy..

www.efinixinc.com 39

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

i2c_setFilterConfig()

Usage void i2c_setFilterConfig(u32 reg, u32 filterId, u32 config)

Parameters [IN] reg struct of I2C setting value
[IN] filterID filter configuration ID number
[IN] config struct of I2C configuration:
• [9:0] I2C slave address
• [14] I2C_FILTER_10BITS
• [15] I2C_FILTER_ENABLE

Include driver/i2c.h

Description Set the filter configuration.

Example
i2c_setFilterConfig(I2C_CTRL, 0, 0x30 | I2C_FILTER_ENABLE);
// Enable filter with ID=0 slave addr = 0x30 default 7 bit filter

i2c_txAck()

Usage void i2c_txAck(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Transmit acknowledge.

i2c_txAckBlocking()

Usage void i2c_txAckBlocking(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Assert an ACK on the SDA pin.

i2c_txAckWait()

Usage void i2c_txAckWait(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Wait for an acknowledge to transmit.

i2c_txByte()

Usage void i2c_txByte(u32 reg, u8 byte)

Parameters [IN] reg struct of I2C register
[IN] byte 8 bits data to send out

Include driver/i2c.h

Description Transfers one byte to the I2C slave.

www.efinixinc.com 40

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

i2c_txByteRepeat()

Usage void i2c_txByteRepeat(u32 reg, u8 byte)

Parameters [IN] reg struct of I2C register
[IN] byte 8 bits data to send out

Include driver/i2c.h

Description Send a byte and then wait until it is fully transmited on the I2C bus.

i2c_txNack()

Usage void i2c_txNack(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Transfers a NACK.

i2c_txNackRepeat()

Usage void i2c_txNackRepeat(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Send a NACK and then wait until it is fully transmited on the I2C bus.

i2c_txNackBlocking()

Usage void i2c_ txNackBlocking(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Assert a NACK on the SDA pin.

i2c_rxAck()

Usage int i2c_rxAck(u32 reg)

Parameters [IN] reg struct of I2C register

Returns [OUT] 1 bit acknowledge

Include driver/i2c.h

Description Receive an acknowledge from the I2C slave.

i2c_rxData()

Usage unit32_t i2c_rxData(u32 reg)

Parameters [IN] reg struct of I2C register

Returns [OUT] 1 byte data from I2C slave

Include driver/i2c.h

Description Receive one byte data from I2C slave.

www.efinixinc.com 41

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

i2c_rxNack()

Usage int i2c_rxNack(u32 reg)

Parameters [IN] reg struct of I2C register

Returns [OUT] 1 bit no acknowledge

Include driver/i2c.h

Description Receive no acknowledge from the I2C slave.

I/O API Calls
read_u8()

Usage u8 read_u8(u32 address)

Include driver/io.h

Parameters [IN] address SoC address

Description Read address with unsigned 8 bits.

read_u16()

Usage u16 read_u16(u32 address)

Include driver/io.h

Parameters [IN] address SoC address

Description Read address with unsigned 16 bits.

read_u32()

Usage u32 read_u32(u32 address)

Include driver/io.h

Parameters [IN] address SoC address

Description Read address with unsigned 32 bits.

write_u8()

Usage void write_u8(u8 data, u32 address)

Include driver/io.h

Parameters [IN] data SoC address data
[IN] address SoC address

Description Write 8 bits unsigned data to the specified address.

www.efinixinc.com 42

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

write_u16()

Usage void write_u16(u16 data, u32 address)

Include driver/io.h

Parameters [IN] data SoC address data
[IN] address SoC address

Description Write 16 bits unsigned data to the specified address.

write_u32()

Usage void write_u32(u32 data, u32 address)

Include driver/io.h

Parameters [IN] data SoC address data
[IN] address SoC address

Description Write 32 bits unsigned data to the specified address.

write_u32_ad()

Usage void write_u32_ad(u32 address, u32 data)

Include driver/io.h

Parameters [IN] address SoC address
[IN] data SoC address data

Description Write 32 bits unsigned data to the specified address.

www.efinixinc.com 43

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Machine Timer API Calls
machineTimer_setCmp()

Usage void machineTimer_setCmp(u32 p, u64 cmp)

Include driver/machineTimer.h

Parameters [IN] p machine timer interrupt
[IN] cmp machine timer compare register

Description Set a timer value to trigger an interrupt.

machineTimer_getTime()

Usage u64 machineTimer_getTime(u32 p)

Include driver/io.h

Parameters [IN] p machine timer interrupt

Returns [OUT] timer value

Description Gets the timer value.

machineTimer_uDelay()

Usage u64 machineTimer_uDelay(u32 usec, u32 hz, u32 reg)

Include driver/io.h

Parameters [IN] usec microseconds
[IN] hz core frequency
[IN] reg machine timer interrupt

Description Use the machine timer to make a delay.

PLIC API Calls
plic_set_priority()

Usage void plic_set_priority(u32 plic, u32 gateway, u32 priority)

Include driver/io.h

Parameters [IN] plic PLIC register structure
[IN] gateway interrupt type
[IN] priority interrupt priority

Description Set the interrupt priority.

www.efinixinc.com 44

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

plic_set_enable()

Usage void plic_set_enable(u32 plic, u32 target, u32 gateway, u32
enable)

Include driver/io.h

Parameters [IN] plic PLIC register structure
[IN] target HART number
[IN] gateway interrupt type
[IN] enable

Description Set the interrupt enable.

plic_set_threshold()

Usage void plic_set_threshold(u32 plic, u32 target, u32 threshold)

Include driver/io.h

Parameters [IN] plic PLIC register structure
[IN] target HART number
[IN] threshold enable = 1

Description Masks individual interrupt sources for the HART.

plic_claim()

Usage u32 plic_claim(u32 plic, u32 target)

Include driver/io.h

Parameters [IN] plic PLIC register structure
[IN] target HART number

Description Claim the PLIC interrupt

plic_release()

Usage void plic_release(u32 plic, u32 target, u32 gateway)

Include driver/io.h

Parameters [IN] plic PLIC register structure
[IN] target HART number
[IN] gateway interrupt type

Description Release the PLIC interrupt.

SPI API Calls
spi_applyConfig()

Usage void spi_applyConfig(Spi_Reg *reg, Spi_Config *config)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register
[IN] config struct of the SPI configuration

Description Applies the SPI configuration to to a register for initial configuration.

www.efinixinc.com 45

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

spi_cmdAvailability()

Usage spi_cmdAvailability(Spi_Reg *reg)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register

Description Read the SPI command buffer.

spi_diselect()

Usage void spi_select(Spi_Reg *reg, uint32_t slaveId)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register
[IN] slaveId ID for the slave

Description De-asserts the SPI select (SS) pin.

spi_read()

Usage uint8_t spi_write(Spi_Reg *reg)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register

Returns [OUT] reg One byte of data

Description Receives one byte from the SPI slave.

spi_rspOccupancy()

Usage spi_rspOccupancy(Spi_Reg *reg)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register

Description Read the occupancy buffer.

spi_select()

Usage void spi_select(Spi_Reg *reg, uint32_t slaveId)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register
[IN] slaveId ID for the slave

Description Asserts the SPI select (SS) pin.

spi_write()

Usage void spi_write(Spi_Reg *reg, uint8_t data)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register
[IN] data 8 bits of data to send out

Description Transfers one byte to the SPI slave.

www.efinixinc.com 46

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

SPI Flash Memory API Calls
spiFlash_f2m_()

Usage void spiFlash_f2m_(Spi_Reg * spi, u32 flashAddress, u32
memoryAddress, u32 size)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] flashAddress flash device address
[IN] memoryAddress memory address
[IN] size programming address size

Description Copy data from the flash device to memory.

spiFlash_f2m()

Usage void spiFlash_f2m(Spi_Reg * spi, u32 cs, u32 flashAddress, u32
memoryAddress, u32 size)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select
[IN] flashAddress flash device address
[IN] memoryAddress memory address

Description Copy data from the flash device to memory with chip select control.

spiFlash_f2m_withGpioCs()

Usage void spiFlash_f2m_withGpioCs(Spi_Reg * spi, Gpio_Reg *gpio, u32
cs, u32 flashAddress, u32 memoryAddress, u32 size)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] gpio reg struct of the GPIO register
[IN] cs chip select
[IN] flashAddress flash device address
[IN] memoryAddress memory address
[IN] size programming address size

Description Flash device from the SPI master with GPIO chip select.

spiFlash_diselect()

Usage void spiFlash_diselect(Spi_Reg *spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select

Description De-asserts the SPI flash device from the master chip select.

www.efinixinc.com 47

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

spiFlash_diselect_withGpioCs()

Usage void spiFlash_diselect_withGpioCs(Gpio_Reg *gpio, u32 cs)

Include driver/spiFlash.h

Parameters [IN] gpio reg struct of the GPIO register
[IN] cs chip select

Description De-asserts the SPI flash device from the master with the GPIO chip select.

spiFlash_init_()

Usage void spiFlash_init_(Spi_Reg * spi)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register

Description Initialize the SPI reg struct.

spiFlash_init()

Usage void spiFlash_init(Spi_Reg * spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select

Description Initialize the SPI reg struct with chip select de-asserted.

spiFlash_init_withGpioCs()

Usage void spiFlash_init_withGpioCs(Spi_Reg * spi, Gpio_Reg *gpio,
u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] gpio reg struct of the GPIO register
[IN] cs chip select

Description Initialize the SPI reg struct with GPIO chip select de-asserted.

spiFlash_select()

Usage void spiFlash_select(Spi_Reg *spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select

Description Select the SPI flash device.

www.efinixinc.com 48

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

spiFlash_select_withGpioCs()

Usage spiFlash_select_withGpioCs(Gpio_Reg *gpio, u32 cs)

Include driver/spiFlash.h

Parameters [IN] gpio reg struct of the GPIO register
[IN] cs chip select

Description Select the SPI flash device with the GPIO chip select.

spiFlash_wake_()

Usage void spiFlash_wake_(Spi_Reg * spi)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register

Description Release power down from the SPI master.

spiFlash_wake()

Usage void spiFlash_wake(Spi_Reg * spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select

Description Release power down from the SPI master with chip select.

spiFlash_wake_withGpioCs()

Usage void spiFlash_wake_withGpioCs(Spi_Reg * spi, Gpio_Reg *gpio,
u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] gpio reg struct of the GPIO register
[IN] cs chip select

Description Release power down from the SPI master with the GPIO chip select.

UART API Calls
uart_applyConfig()

Usage char uart_applyConfig(Uart_Reg *reg, Uart_Config *config)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] config struct of the UART configuration

Description Applies the UART configuration to to a register for initial configuration.

www.efinixinc.com 49

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

uart_emptyInterruptEna()

Usage uart_emptyInterruptEna(u32 reg char ena)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] ena Enable interrupt

Description Enable the TX FIFO empty interrupt.

uart_NotemptyInterruptEna()

Usage uart_NotemptyInterruptEna(u32 reg char ena)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] ena Enable interrupt

Description Enable the RX FIFO not empty interrupt.

uart_read()

Usage char uart_read(Uart_Reg *reg)

Include driver/uart.h

Parameters [IN] reg struct of the UART register

Returns [OUT] reg character that is read

Description Reads a character from the UART slave.

uart_readOccupancy()

Usage uint32_t uart_readOccupancy(Uart_Reg *reg)

Include driver/uart.h

Parameters [IN] reg struct of the UART register

Description Read the number of bytes in the RX FIFO.

uart_status_read()

Usage uart_status_read(u32 reg)

Include driver/uart.h

Parameters [IN] reg struct of the UART register

Returns [OUT] 32-bit status register from the UART

Description Read the UART status.

www.efinixinc.com 50

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

uart_status_write()

Usage uart_status_write(u32 reg)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] data input data for the UART status.

Returns [OUT] 32-bit status register from the UART

Description Write the UART status.

uart_write()

Usage void uart_write(Uart_Reg *reg, char data)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] data write a character

Description Write a character to the UART.

uart_writeStr()

Usage void uart_writeStr(Uart_Reg *reg, char* str)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] str string to write

Description Write a string to the UART TX.

uart_writeAvailability()

Usage uart_writeAvailability(Uart_Reg *reg)

Include driver/uart.h

Parameters [IN] reg struct of the UART register

Description UART read/write FIFO.

Handling Interrupts
There are two kinds of interrupts, trap vectors and PLIC interrupts, and you handle them
using different methods.

www.efinixinc.com 51

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Figure 4: Types of Interrupts

Trap
Vector

Exceptions

Machine Timer

Machine External Interrupt

PLIC

I2C Interrupt

SPI Interrupt

UART Interrupt

External Interrupt

Other Interrupt

RISC-V
SoC

Trap

Machine Trap
Cause (mcause)

Interrupt Claim Registers

mcause
Register

Interrupt ID

Trap Vectors
Trap vectors trap interrupts or exceptions from the system. Read the Machine Cause Register
(mcause) to identify which type of interrupt or exception fthe system is generating. Refer
to "Machine Cause Register (mcause): 0x342" in the data sheet for your SoC for a list of the
exceptions and interrupts used for trap vectors. The following flow chart explains how to
handle trap vectors.

For CAUSE_MACHINE_EXTERNAL, it will call the subroutine to process the PLIC level
interrupts.

Figure 5: Handling Trap Vectors

Call Trap

Read mcause

Is Interrupt? Call Exceptions()
yes

no

CAUSE_MACHINE_TIMER? Call Timer()
yes

Call ExternalInterrupt()
yes

no

Call Exceptions() or
handle by user

no

CAUSE_MACHINE_EXTERNAL?

www.efinixinc.com 52

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

PLIC Interrupts
The PLIC collects external interrupts and is also used for
CAUSE_MACHINE_EXTERNAL cases. Read the interrupt claim registers (PLIC claim) to
identify the source of the external interrupt. Refer to Address Map on page 24for a list of the
interrupt IDs.

The following flow chart shows how the PLIC handles interrupts.The PLIC identifies the
interrupt ID and processes the corresponding interrupts.

Figure 6: Handling PLIC Interrupts

Call ExternalInterrupt()

Read PLIC Claim

Is Interrupt
Claimed?

Call I2C Interrupt()

no

yes

PLIC_SYSTEM_UART_INTERRUPT? Call UART Interrupt()
yes

Call SPI Interrupt()
yes

no

Call Exceptions()

no

PLIC_SYSTEM_SPI_INTERRUPT?

PLIC_SYSTEM_I2C_INTERRUPT? yes

no

Call Other PLIC Interrupt()
yes

no

Other PLIC Interrupt?

Release
Claimed Interrupt

www.efinixinc.com 53

Opal (Xyloni) RISC-V SoC Hardware and Software User Guide

Revision History

Table 4: Revision History

Date Version Description

November 2021 1.2 Added information about the flow for handling interrupts in the API
Reference chapter. (DOC-398)
Updated UART and GPIO API calls.
Added link to OpenJDK (DOC-457)
Eclipse BSP environment variable no longer needed.

February 2021 1.1 Corrected instructions when launching Eclipse: choose option 4
Opal_T8. (DOC-384)
Corrected description for APB3 RTL example. (DOC-384)
Added a note that the SoC does not support floating-point numbers.

November 2020 1.0 Initial release.

www.efinixinc.com 54

	Contents
	Introduction
	VexRiscv RISC-V Core
	Required Software
	Required Hardware

	1. Install Software and SoC
	Install the Efinity® Software
	Install the SoC Files
	Install the RISC-V SDK
	Install the Java JRE
	Installing USB Drivers

	2. About the RTL Example Design
	3. Launch Eclipse
	Set Global Environment Variables

	4. Create and Build a Software Project
	Create a New Project
	Import Project Settings (Optional)
	Enable Debugging
	Build

	5. Debug with the OpenOCD Debugger
	Import the Debug Configuration
	Debug
	Enable Telnet on Windows
	Open a Terminal

	6. Create Your Own RTL Design
	Create a Custom APB3 Peripheral
	Remove Unused Peripherals from the RTL Design

	7. Create Your Own Software
	Deploying an Application Binary
	Boot from a Flash Device
	Boot from the OpenOCD Debugger
	Copy a User Binary to the Flash Device

	About the Board Specific Package
	Address Map
	Example Software
	blinkAndEcho Example
	EfxApb3Example
	i2cDemo Example
	readFlash Example
	spiDemo Example
	timerAndGpioInterruptDemo Example
	userInterruptDemo Example
	writeFlash Example
	Xyloni_SelfTest Example

	8. Troubleshooting
	Error 0x80010135: Path too long (Windows)
	OpenOCD Error: timed out while waiting for target halted
	OpenOCD error code (-1073741515)
	OpenOCD Error: no device found
	OpenOCD Error: failed to reset FTDI device: LIBUSB_ERROR_IO
	OpenOCD Error: target 'fpga_spinal.cpu0' init failed
	Eclipse Fails to Launch with Exit Code 13
	Undefined Reference to 'cosf'

	9. API Reference
	Control and Status Registers
	GPIO API Calls
	I2C API Calls
	I/O API Calls
	Machine Timer API Calls
	PLIC API Calls
	SPI API Calls
	SPI Flash Memory API Calls
	UART API Calls
	Handling Interrupts

	Revision History

