
FIFO Core User Guide
UG-CORE-FIFO-v4.0
June 2021
www.efinixinc.com

Copyright © 2021. All rights reserved. Efinix, the Efinix logo, the Titanium logo, Quantum, Trion, and Efinity are trademarks of Efinix, Inc. All other
trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com

Contents

Introduction... 3

Features..3

Functional Description...6
Ports... 6
Synchronous FIFO Operation..8
Asynchronous FIFO Operation... 10
Programmable Full and Empty Signals..13
Reset..14
Datacount... 14
Latency.. 15

Synchronous FIFO... 15
Asynchronous FIFO... 16

IP Manager.. 18

Customizing the FIFO..19

FIFO Example Design..21

FIFO Testbench..22

Revision History...24

FIFO Core User Guide

Introduction
The FIFO core is a customizable first-in first-out memory queue that uses block RAM in the
FPGA for storage. The core has parameters you use to create a custom instance. For example,
you can set the FIFO depth, the data bus width, whether the read and write domains are
synchronous or asynchronous, etc.

Use the IP Manager to select IP, customize it, and generate files. The FIFO core has an
interactive wizard to help you set parameters. The wizard also has options to create a
testbench and/or example design targeting an Efinix® development board.

Features
• Depths up to 131,072 words
• Data widths from 1 to 1024 bits
• Symmetric read–to–write port aspect ratio
• Synchronous or asynchronous clock domains supports standard or First–Word–Fall–

Through (FWFT)
• Programmable full and empty status flags, set by user–defined parameters
• Almost full and almost empty flags indicate one word left
• Configurable handshake signals
• Verilog RTL and simulation testbench
• Includes example designs targeting the Trion® T20 BGA256 Development Board and

Titanium Ti60 F225 Development Board
• Asynchronous clock domain FWFT read mode
• FIFO datacount to indicate how many words available in FIFO
• Recommended clock frequency for the FIFO core running C4 grade device with default

setting is up to 125 MHz
• Option to exclude optional flags

New in Efinity® v2021.1
• Added Titanium FPGA support

FPGA Support
The FIFO core supports all Trion® and Titanium FPGAs.

www.efinixinc.com 3

FIFO Core User Guide

Titanium Resource Utilization and Performance
To achieve the performance shown in the following tables, ensure that all inputs to the FIFO
are registered and the outputs passed through a minimal number of logic levels.

Table 1: Synchronous Clock FIFO (DEPTH = 512, DATA_WIDTH = 32)
125 MHz clock constraint.

FPGA Read
Mode

Logic and
Adders

Flipflops Memory
Blocks

DSP48
Blocks

fMAX (MHz)
- clk_i

Efinity®

Version(1)

Standard 100 66 2 0 630Ti60 F225 ES C3

FWFT 108 67 2 0 615

2021.1

Table 2: Asynchronous Clock FIFO (DEPTH = 512, DATA_WIDTH = 32)
125 MHz clock constraint.

fMAX (MHz) -FPGA Read
Mode

Logic and
Adders

Flipflops Memory
Blocks

DSP48
Blocks

wr_clk_i rd_clk_i

Efinity®

Version(1)

Standard 137 139 2 0 550 562Ti60 BGA225 ES
C3

FWFT 166 143 2 0 591 604

2021.1

Trion Resource Utilization and Performance
To achieve the performance shown in the following tables, ensure that all inputs to the FIFO
are registered and the outputs passed through a minimal number of logic levels.

Table 3: Synchronous Clock FIFO (DEPTH = 512, DATA_WIDTH = 32)
125 MHz clock constraint.

FPGA Read Mode Logic Utilization
(LUTs)

Memory Blocks fMAX (MHz)
- clk_i

Efinity®

Version(1)

Standard 98 62.T8 BGA81 C2

FWFT 110 65

Standard 98 168T20 BGA256 C3

FWFT 110 152

Standard 98 184T35 BGA324 C4

FWFT 110 173

Standard 98 194T120 BGA324 C4

FWFT 110

4

166

2020.1

(1) Using Verilog HDL.

www.efinixinc.com 4

FIFO Core User Guide

Table 4: Asynchronous Clock FIFO (DEPTH = 512, DATA_WIDTH = 32)
125 MHz clock constraint.

fMAX (MHz) -FPGA Read Mode LUTs Memory
Blocks

wr_clk_i rd_clk_i

Efinity®

Version(1)

Standard 183 65 68T8 BGA81 C2

FWFT 214 69 61

Standard 183 151 166T20 BGA256 C3

FWFT 214 154 144

Standard 183 207 179T35 BGA324 C4

FWFT 214 174 183

Standard 183 196 188T120 BGA324 C4

FWFT 214

4

203 190

2020.1

www.efinixinc.com 5

FIFO Core User Guide

Functional Description
The FIFO core is a first-in first-out memory queue for any application requiring an ordered
storage buffer and retrieval. The core provides an optimized solution using the block RAM
in Trion® FPGAs. The core supports synchronous (read and write use the same clock) and
asynchronous (read and write use different clocks) clocking.

Figure 1: FIFO System Block Diagram

FIFO
rd_en_i
empty_o
almost_empty_o
prog_empty_o
rdata[DATA_WIDTH-1:0]

Read
Agent

wr_en_i
full_o
almost_full_o
prog_full_o
wdata[DATA_WIDTH-1:0]

Write
Agent

wr_ack_o
overflow_o
wr_datacount_o[(log2DEPTH)-1:0]

rd_valid_o
underflow_o
rd_datacount_o[(log2DEPTH)-1:0]

a_
rs

t_
i

Read
Clock

Domain

Write
Clock

Domain
w

r_
cl

k_
i

rd
_c

lk
_i

Ports

Table 5: FIFO Core Clock, Reset and Datacount Ports

Port Synchronous Asynchronous Direction Description

a_rst_i Input Reset. Asynchronous reset signal that
initializes all internal pointers and
output flags.

wr_clk_i Input Write clock. All signals in the write
domain are synchronous to this clock.

rd_clk_i Input Read clock. All signals in the read
domain are synchronous to this clock.

clk_i Input Clock. All signals on the write and read
domains are synchronous to this clock.

wr_datacount_o [n-1:0] Output Asynchronous FIFO write domain data
count.
n=log2[DEPTH].

rd_datacount_o [n-1:0] Output Asynchronous FIFO read domain data
count.
n=log2[DEPTH].

datacount_o [n-1:0] Output Synchronous FIFO data count.
n=log2[DEPTH].

www.efinixinc.com 6

FIFO Core User Guide

Table 6: FIFO Core Write Ports
For both synchronous and asynchronous clocks.

Port Direction Description

wdata [m-1:0] Input Write data. The input data bus used when writing to the FIFO buffer.
m=DATA_WIDTH.

wr_en_i Input Write enable. If the FIFO buffer is not full, asserting this signal causes data
(on wdata) to be written to the FIFO.

full_o Output Full flag. When asserted, this signal indicates that the FIFO buffer is full.
Write requests are ignored when the FIFO is full. Initiating a write while full
is not destructive to the FIFO.

almost_full_o Output Optional, almost full. When asserted, this signal indicates that only one
more write can be performed before the FIFO is full.

prog_full_o Output Optional, programmable full. This signal is asserted when the number
of words in the FIFO is greater than or equal to the assert threshold. It is
deasserted when the number of words in the FIFO is less than the negate
threshold.

wr_ack_o Output Optional, write acknowledge. This signal indicates that a write request
(wr_en_i) during the prior clock cycle succeeded.

overflow_o Output Optional, overflow. This signal indicates that a write request (wr_en_i)
during the prior clock cycle was rejected because the FIFO buffer is full.
Overflowing the FIFO is not destructive to the contents of the FIFO.

Table 7: FIFO Core Read Ports
For both synchronous and asynchronous clocks.

Port Direction Description

rdata [m-1:0] Output Read data. The output data bus driven when reading the FIFO buffer.
m=DATA_WIDTH.

rd_en_i Input Read enable. If the FIFO buffer is not empty, asserting this signal causes
data to be read from the FIFO (output on rdata).

empty_o Output Empty flag. When asserted, this signal indicates that the FIFO buffer is
empty. When empty, Read requests are ignored. Initiating a read while
empty is not destructive to the FIFO.

almost_empty_o Output Optional, almost empty flag. When asserted, this signal indicates that only
one word remains in the FIFO buffer before it is empty.

prog_empty_o Output Optional, programmable empty. This signal is asserted when the number
of words in the FIFO buffer is less than or equal to the assert threshold. It
is de-asserted when the number of words in the FIFO exceeds the negate
threshold.

rd_valid_o Output Optional, read valid. This signal indicates that valid data is available on the
output bus (rdata).

underflow_o Output Optional, underflow. Indicates that the read request (rd_en_i) during
the previous clock cycle was rejected because the FIFO buffer is empty.
Underflowing the FIFO is not destructive to the FIFO.

www.efinixinc.com 7

FIFO Core User Guide

Synchronous FIFO Operation
The FIFO core signals are synchronized on the rising edge clock of the respective clock
domain. If you want to synchronize to the falling clock edge, use an inverter before sending
the signal to the clock input.

Figure 2: Synchronous FIFO Block Diagram

Synchronous FIFOclk_i
a_rst_i
datacount_o[(log2DEPTH)-1:0]

State
Machine RAMwdata[DATA_WIDTH-1:0]

wr_en_i
rdata[DATA_WIDTH-1:0]
rd_en_i

Standard Mode
The following waveform shows the FIFO behavior in standard mode when it is written until
full and then read until empty. D1 and DN are the first and last data, respectively.

Figure 3: Synchronous FIFO Standard Mode Waveform

D1 D2 DN-1 DN DN+1D3

D1 D2 DN-1 DNDN-2

clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
underflow_o

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

If the system tries to write data DN+1 when full_o is asserted, the core ignores DN+1
and asserts overflow_o. full_o deasserts during a read request, signaling that the FIFO
is ready for more write requests. When the last data is read from the FIFO, the core asserts
empty_o, indicating there is no more data. Further read requests when there is no more data
triggers an assertion on underflow_o.

www.efinixinc.com 8

FIFO Core User Guide

First-Word-Fall-Through Mode
First-Word-Fall-Through (FWFT), is a mode in which the first word written into the FIFO
"falls through" and is available at the output without a read request. The following waveform
shows the behavior of the FIFO in FWFT mode when it is written until full and then read
until empty. D1 and DN are the first and last data, respectively.

The write behavior is the same as standard mode; the read behavior is different. When
the first word is written into the FIFO buffer, the core deasserts empty_o and asserts
rd_valid_o. There is one clock cycle of latency from wr_en_i to deassert empty_o
and assert rd_valid_o. Consequently, the first word that falls through the FIFO onto the
rdata also has the one additional clock cycle of latency.

D1 is available on the rdata output data bus without a read request (that is, rd_en_i is
not asserted). When the second data is written into the FIFO buffer, the output data does not
change until there is a read request. When it detects a read request, the FIFO core outputs
the next available data onto the output bus. If the current data is the last data DN and the
core detects a read request, it asserts empty_o and deasserts rd_valid_o. Additional reads
underflow the FIFO.

Figure 4: Synchronous FIFO FWFT Mode Waveform

D1 D2 DN-1 DN DN+1D3

D1 D3D2 DN-2

clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
underflow_o

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata DN-1 DN

www.efinixinc.com 9

FIFO Core User Guide

Asynchronous FIFO Operation
With an asynchronous FIFO, the two protocols can work in their respective clock domains
and still transfer reliable data to each other. When there is a write or read request affecting
its own respective domain’s flags, the asynchronous FIFO has 0 delays. Whereas when
affecting the other domain’s flags, it has a 1 clock cycle delay from its respective domain
plus 2 clock cycles of the other domain. For example, a write request only reflects on the
read domain after 1 write clock cycle plus 2 read clock cycles and vice versa. Enabling the
PIPELINE_REGadds 1 more additional clock cycle of the other domain on top of it. Refer
to the latency table for asynchronous FIFO in Latency on page 15 for more info.

Figure 5: Asynchronous FIFO Block Diagram

Asynchronous FIFO

a_rst_i
wr_clk_i
wdata[DATA_WIDTH-1:0]
wr_en_i
wr_datacount_o[(log2DEPTH)-1:0]

Gray Decoder

Gray Encoder

State
Machine

Gray Encoder

Gray Decoder

State
Machine

RAM

Write Domain Read Domain

rd_clk_i
rdata[DATA_WIDTH-1:0]
rd_en_i
rd_datacount_o[(log2DEPTH)-1:0]

For asynchronous FIFO, a write operation affecting the write domain flags and a read
operation affecting the read domain flags have the same behavior as the synchronous FIFO
except when they are affecting crossed domain flags. The following examples emphasize the
cross-clock domain flags update latency.

Standard Mode
The following figures show examples of asynchronous FIFO standard mode with a faster read
clock and write clock, respectively. The waveforms show the FIFO written until full and a
few read requests afterwards.

In the read example shown in Figure 6: Asynchronous FIFO Standard Mode Faster Read
Clock with PIPELINE_REG=0 on page 11, the read clock frequency is double that of
the write clock with the same phase. When there is a write request at node 2, empty_o does
not deassert immediately; instead, it deasserts 1 write clock plus 2 clock read clocks later at
node 6. Similarly, almost_empty_o deasserts at node 8, which is 1 write clock plus 2 read
clocks later after the second write request at node 4. almost_full_o and full_o deassert
at the same time at node 22 because there are 2 read requests detected before the write domain
is synchronized at node 20.

www.efinixinc.com 10

FIFO Core User Guide

Figure 6: Asynchronous FIFO Standard Mode Faster Read Clock with PIPELINE_REG=0

D1 D2

wr_clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
rd_clk_i

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

DN-1 DN

W
rit

e
D

om
ai

n
R

ea
d

D
om

ai
n

DN+1

D1 D2

0

1st write
request

1st read
request

2nd write
request

2nd read
request

1 wr_clk_i 2 rd_clk_i

1 rd_clk_i
2 wr_clk_i

1 rd_clk_i 2 wr_clk_i

1 wr_clk_i 2 rd_clk_i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

In the write example shown in Figure 7: Asynchronous FIFO Standard Mode Faster
Write Clock with PIPELINE_REG=0 on page 11, the write clock frequency is
double that of the read clock with the same phase. The empty_o deasserts at node 5 and
almost_empty_o deasserts at node 7. Each of these signals are affected by write requests on
node 1 and node 2 respectively. Read requests at node 11 and 13 reflect on the write domain
at node 15 and 17, respectively.

Figure 7: Asynchronous FIFO Standard Mode Faster Write Clock with PIPELINE_REG=0

D1 D2 DN-1 DN

W
rit

e
D

om
ai

n
R

ea
d

D
om

ai
n

DN+1

D1 D2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1st write
request

2nd write
request

1st read
request

2nd read
request

1 rd_clk_i 2 wr_clk_i

1 rd_clk_i 2 wr_clk_i

1 wr_clk_i 2 rd_clk_i

1 wr_clk_i 2 rd_clk_i

wr_clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
rd_clk_i

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

www.efinixinc.com 11

FIFO Core User Guide

FWFT Mode
The following figures show example of asynchronous FIFO FWFT mode with faster read
clock and faster write clock. Both examples have the similar read request to write flags
update behavior as their standard mode counterpart. The write request to empty_o delay
of synchronous FIFO FWFT applies here as well, just that the additional clock is of the read
clock.

In the example shown inFigure 8: Asynchronous FIFO FWFT Mode Faster Read Clock
with PIPELINE_REG=0 on page 12, the read clock frequency is double that of the
write clock with the same phase. When there is a write request at node 2, empty_o does
not deassert immediately; instead, it deasserts 1 write clock plus 3 clocks later at node 7,
which has one additional clock cycle latency compared to standard mode. Concurrently, the
empty_o deasserts, the first data falls through the FIFO onto rdata, and the rd_valid_o
is asserted. The almost_empty_o behaves the same as standard mode whereby it only
needs 1 write clocks plus 2 clocks to deasserts at node 8, after the second write request at node
4. Subsequent read request outputs the next available word inside FIFO.

Figure 8: Asynchronous FIFO FWFT Mode Faster Read Clock with PIPELINE_REG=0

D1 D3D2 DN-1 DN

W
rit

e
D

om
ai

n
R

ea
d

D
om

ai
n

DN+1

D1 D3D2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1st write
request

2nd write
request

1st read
request

2nd read
request

1 rd_clk_i 2 wr_clk_i

1 rd_clk_i 2 wr_clk_i

1 wr_clk_i 3 rd_clk_i

1 wr_clk_i 2 rd_clk_i

wr_clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
rd_clk_i

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

In the example shown in Figure 9: Asynchronous FIFO FWFT Mode Faster Write Clock
with PIPELINE_REG=0 on page 13, the write clock frequency is double that of the
read clock with the same phase. Between positive edges of read clock at node 2 and node
4, 2 write requests are detected at the same time. The empty_o deasserts 3 clock cycles
later at node 8, while almost_empty_o only requires 2 clock cycles to deassert at node
6. This means that the FIFO read domain detected 2 write words at node 6, however it is
not ready for reading as the empty_o remains asserted. The first word only falls through
at the same time as empty_o is deasserted and rd_valid_o is asserted. Always refer to
empty_o instead of datacount_o value whenever you want to do a read request. Refer to
the Datacount on page 14 for more information about the datacount_o signal.

www.efinixinc.com 12

FIFO Core User Guide

Figure 9: Asynchronous FIFO FWFT Mode Faster Write Clock with PIPELINE_REG=0

D1 D2 D3 DN-1 DN

W
rit

e
D

om
ai

n
R

ea
d

D
om

ai
n

DN+1

D2 D3D1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

wr_clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
rd_clk_i

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

1st write
request

2nd write
request

1st read
request

2nd read
request

1 rd_clk_i

2 wr_clk_i

1 rd_clk_i 2 wr_clk_i

1 wr_clk_i 3 rd_clk_i

1 wr_clk_i 2 rd_clk_i

Programmable Full and Empty Signals
The FIFO core supports user-defined full and empty signals with customized
depths (prog_full_o and prog_empty_o). To enable these signals, set the
PROGRAMMABLE_FULL or PROGRAMMABLE_EMPTY parameters as STATIC_SINGLE or
STATIC_DUAL. Refer to Parameters for more info on the available values.

Important: For the asynchronous FIFO, these signals are synchronized to their respective clock domain’s
available words.

Table 8: prog_full_o Assert and Deassert Conditions

Value Type Condition

Assert number of words in FIFO ≥ PROG_FULL_ASSERTSTATIC_SINGLE

Deassert number of words in FIFO < PROG_FULL_ASSERT

Assert number of words in FIFO ≥ PROG_FULL_ASSERTSTATIC_DUAL

Deassert number of words in FIFO < PROG_FULL_NEGATE

Table 9: prog_empty_o Assert and Deassert Conditions

Value Type Condition

Assert number of words in FIFO ≤ PROG_EMPTY_ASSERTSTATIC_SINGLE

Deassert number of words in FIFO > PROG_EMPTY_ASSERT

Assert number of words in FIFO ≤ PROG_EMPTY_ASSERTSTATIC_DUAL

Deassert number of words in FIFO > PROG_EMPTY_NEGATE

To avoid erratic behavior, follow these rules for STATIC_DUAL modes:
• PROG_FULL_ASSERT ≥ PROG_FULL_NEGATE
• PROG_EMPTY_ASSERT ≤ PROG_EMPTY_NEGATE

www.efinixinc.com 13

FIFO Core User Guide

Reset
The FIFO core includes an asynchronous reset signal, a_rst_i, which is active high. If your
design requires an active low reset signal, invert the source before passing it to the input of
a_rst_i. Efinix recommends you keep the reset signal high for at least 5 clock cycles of
the slowest clock to ensure correct operation. During reset, you must deassert wr_en_i and
rd_en_i.

The following figures show the reset behavior for the synchronous and asynchronous FIFO,
respectively. Write requests during reset are ignored. After a_rst_i is deasserted, writes can
occur. Reset does not initialize rdata. The rdata remains the same as before reset until the
next valid read request for standard mode, or the next valid write request for FWFT mode.

Figure 10: Synchronous FIFO Standard Mode Reset
clk_i

a_rst_i
full_o

almost_full_o
empty_o

almost_empty_o
wr_en_i

Figure 11: Asynchronous FIFO Standard Mode Reset
wr_clk_i

a_rst_i
full_o

almost_full_o
rd_clk_i

empty_o
almost_empty_o

wr_en_i

Note: These waveforms are examples to illustrate the reset functionality. For optimized behavior, do not
assert wr_en_i during reset.

Datacount
The FIFO core includes datacount signal as output. Synchronous FIFO enables
datacount_o while asynchronous FIFO enables both wr_datacount_o and
rd_datacount_o.

The datacount is zero when the FIFO is in empty and full state. You must ensure that the
width of datacount is log2(DEPTH) to get the correct value.

Note: Always refer to the empty_o and full_o signals when reading or writing FIFO.

www.efinixinc.com 14

FIFO Core User Guide

Latency
This section defines the latency of the output signals in the FIFO core. The output signals
latency are updated in response to the read or write requests. Latency is described in the
following waveform. A 0 latency means the signal is asserted or deasserted at the same rising
edge of the clock at which the write or read request is sampled. A latency of 1 means the
signal is asserted or deasserted at the next rising edge of the clock.

Figure 12: Latency Example Synchronous FIFO FWFT Mode

wr_en
Latency 0

Latency 1
wr_ack_o

clk_i

empty_o

Synchronous FIFO

Table 10: Synchronous FIFO Write Flags Update Latency Due to wr_en_i Signal

Latency (clk_i)Port

Standard Mode FWFT Mode

wr_ack_o 0 0

full_o 0 0

almost_full_o 0 0

prog_full_o 0 0

overflow_o 0 0

Table 11: Synchronous FIFO Read Flags Update Latency Due to wr_en_i Signal

Latency (clk_i)Port

Standard Mode FWFT Mode

rd_valid_o – –

empty_o 0 1

almost_empty_o 0 0

prog_empty_o 0 0

underflow_o – –

datacount_o 0 0

www.efinixinc.com 15

FIFO Core User Guide

Table 12: Synchronous FIFO Write Flags Update Latency Due to rd_en_i Signal

Latency (clk_i)Port

Standard Mode FWFT Mode

wr_ack_o – –

full_o 0 0

almost_full_o 0 0

prog_full_o 0 0

overflow_o – –

Table 13: Synchronous FIFO Read Flags Update Latency Due to rd_en_i Signal

Latency (clk_i)Port

Standard Mode FWFT Mode

rd_valid_o 0(2) 0(2)

empty_o 0 0

almost_empty_o 0 0

prog_empty_o 0 0

underflow_o 0 0

datacount_o 0 0

Asynchronous FIFO

Table 14: Asynchronous FIFO Write Flags Update Latency Due to wr_en_i

Latency (PIPELINE_REG=0) Latency (PIPELINE_REG=1)Port

Standard Mode FWFT Mode Standard Mode FWFT Mode

wr_ack_o 0 0 0 0

full_o 0 0 0 0

almost_full_o 0 0 0 0

prog_full_o 0 0 0 0

overflow_o 0 0 0 0

wr_datacount_o 0 0 0 0

(2) OUTPUT_REG adds one latency to these signal.

www.efinixinc.com 16

FIFO Core User Guide

Table 15: Asynchronous FIFO Read Flags Update Latency Due to wr_en_i

Latency (PIPELINE_REG=0) Latency (PIPELINE_REG=1)Port

Standard Mode FWFT Mode Standard Mode FWFT Mode

rd_valid_o – – – –

empty_o 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 3 rd_clk_i 1 wr_clk_i + 3 rd_clk_i 1 wr_clk_i + 4 rd_clk_i

almost_empty_o 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 3 rd_clk_i 1 wr_clk_i + 3 rd_clk_i

prog_empty_o 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 3 rd_clk_i 1 wr_clk_i + 3 rd_clk_i

underflow_o – – – –

rd_datacount_o 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 3 rd_clk_i 1 wr_clk_i + 3 rd_clk_i

Table 16: Asynchronous FIFO Write Flags Update Latency Due to rd_en_i

Latency (PIPELINE_REG=0) Latency (PIPELINE_REG=1)Port

Standard Mode FWFT Mode Standard Mode FWFT Mode

wr_ack_o – – – –

full_o 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 3 wr_clk_i 1 rd_clk_i + 3 wr_clk_i

almost_full_o 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 3 wr_clk_i 1 rd_clk_i + 3 wr_clk_i

prog_full_o 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 3 wr_clk_i 1 rd_clk_i + 3 wr_clk_i

overflow_o – – – –

wr_datacount_o 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 3 wr_clk_i 1 rd_clk_i + 3 wr_clk_i

Table 17: Asynchronous FIFO Read Flags Update Latency Due to rd_en_i

Latency (PIPELINE_REG=0) Latency (PIPELINE_REG=1)Port

Standard Mode FWFT Mode Standard Mode FWFT Mode

rd_valid_o 0(2) 0(2) 0(2) 0(2)

empty_o 0 0 0 0

almost_empty_o 0 0 0 0

prog_empty_o 0 0 0 0

underflow_o 0 0 0 0

rd_datacount_o 0 0 0 0

www.efinixinc.com 17

FIFO Core User Guide

IP Manager
The Efinity® IP Manager is an interactive wizard that helps you customize and generate
Efinix® IP cores. The IP Manager performs validation checks on the parameters you set to
ensure that your selections are valid. When you generate the IP core, you can optionally
generate an example design targeting an Efinix development board and/or a testbench. This
wizard is helpful in situations in which you use several IP cores, multiple instances of an IP
core with different parameters, or the same IP core for different projects.

Note: Not all Efinix IP cores include an example design or a testbench.

Generating a Core with the IP Manager
The following steps explain how to customize an IP core with the IP Configuration wizard.

1. Open the IP Catalog.
2. Choose an IP core and click Next. The IP Configuration wizard opens.
3. Enter the module name in the Module Name box.

Note: You cannot generate the core without a module name.

4. In the General tab, customize the IP core. For detailed information on the options, refer
to the IP core's user guide or on-line help.

5. (Optional) In the Deliverables tab, specify whether to generate an IP core example
design targeting an Efinix® development board and/or testbench. For SoCs, you can also
optionally generate embedded software example code. These options are turned on by
default.

6. (Optional) In the Summary tab, review your selections.
7. Click Generate to generate the IP core and other selected deliverables.
8. In the Review configuration generation dialog box, click Generate. The Console in the

Summary tab shows the generation status.

Note: You can disable the Review configuration generation dialog box by turning
off the Show Confirmation Box option in the wizard.

9. When generation finishes, the wizard displays the Generation Success dialog box. Click
OK to close the wizard.

The wizard adds the IP to your project and displays it under IP in the Project pane.

Generated Files
The IP Manager generates these files and directories:
• <module name>_define.vh—Contains the customized parameters.
• <module name>_tmpl.v—Verilog HDL instantiation template.
• <module name>_tmpl.vhd—VHDL instantiation template.
• <module name>.v—IP source code.
• settings.json—Configuration file.
• <kit name>_devkit—Has generated RTL, example design, and Efinity® project targeting

a specific development board.
• Testbench—Contains generated RTL and testbench files.

Note: Refer to the IP Manager chapter of the Efinity® Software User Guide for more information about the
Efinity® IP Manager.

www.efinixinc.com 18

FIFO Core User Guide

Customizing the FIFO
The core has parameters so you can customize its function. You set the parameters in the
General tab of core IP Configuration window.

Table 18: FIFO Core Parameter

Parameter Options Description

System Clock Asynchronous,
Synchronous

Defines whether the FIFO read and write domain is synchronous or
asynchronous.
Default: Synchronous

FIFO Depth 16 – 131072 Defines the FIFO depth, which determines the maximum number of
words the FIFO can store before it is full. The depth is multiples of 2
from 16 – 217.
Default: 512

Data Bus Width 1 – 256 Defines the FIFO's read and write data bus widths.
Default: 32

FIFO Mode STANDARD, FWFT Defines the FIFO's read mode as standard or FWFT.
Default: STANDARD

Output Register Enable, Disable Adds one pipeline stage to rdata and rd_valid_o to improve timing
delay out from efx_ram.
Default: Enable

Programmable Full
Assert Value

1 – DEPTH Threshold value when prog_full_o is enabled. When Enable
Programmable Full Option is:
STATIC_SINGLE: Single threshold value for assertion and deassertion
of prog_full_o.
STATIC_DUAL: Upper threshold value for assertion of prog_full_o.
Default: 512

Enable
Programmable Full
Option

NONE,
STATIC_SINGLE,

STATIC_DUAL

Controls the prog_full_o signal:
NONE: Disabled.
STATIC_SINGLE: Enabled, asserts and deasserts at a single threshold
value. (default)
STATIC_DUAL: Enabled, asserts or deasserts at different threshold
values.

Programmable Full
Negate Value

1 – Programmable
Full Assert Value

Use when PROGRAMMABLE_FULL is set to STATIC_DUAL. Sets the
lower threshold value for prog_full_o during deassertion.
Default: 512

Programmable
Empty Assert
Value

0 – (FIFO Depth-1) Threshold value when prog_empty_o is enabled. When Enable
Programmable Full Option is:
STATIC_SINGLE: Single threshold value for assertion and deassertion
of prog_empty_o.
STATIC_DUAL: Lower threshold value for assertion of prog_empty_o.
Default: 0

Programmable
Empty Negate
Value

Programmable
Empty Assert

Value – (DEPTH-1)

Use when PROGRAMMABLE_EMPTY is set to STATIC_DUAL. Sets the
upper threshold value for prog_empty_o during deassertion.
Default: 0

www.efinixinc.com 19

FIFO Core User Guide

Parameter Options Description

Enable
Programmable
Empty Option

NONE,
STATIC_SINGLE,

STATIC_DUAL

Controls the prog_empty_o signal:
NONE: Disabled.
STATIC_SINGLE: Enabled, asserts and deasserts at a single threshold
value. (default)
STATIC_DUAL: Enabled, asserts or deasserts at different threshold
values.

Optional Signals Enable, Disable Enables the optional signals: wr_ack_o, almost_full_o, overflow_o,
rd_valid_o, almost_empty_o and underflow_o. You can disable this
feature to improve macro timing.
Default: Enable

PIPELINE Register Enable, Disable Applicable to Asynchronous FIFO mode only. Adds one latency of the
opposing clock domain to all applicable output signals when wr_en_i
or rd_en_i signal is asserted. Enable this feature to improve the macro
timing. You can disable this feature if a project does not require fast
speed.
Default: Enable

www.efinixinc.com 20

FIFO Core User Guide

FIFO Example Design
You can choose to generate the example design when generating the core in the IP Manager
Configuration window. Compile the example design project and download the .hex or .bit
file to your board.

Important: Efinix tested the example design generated with the default parameter options only.

Figure 13: FIFO Core Example Design

Read/Write
Controller FIFO Core

CheckerLED
Controller

trigger

din

dout

To Board
LED

Example Design

The example design targets the Trion® T20 BGA256 Development Board and Titanium Ti60
F225 Development Board. This design continuously generates data on wdata and writes it
into the FIFO core.

The design has these blocks:

• Read/Write Controller–Sends wdata to the FIFO core and triggers the FIFO core for
reads and writes.

• Checker–Compares rdata and wdata and sends the results to the LED controller.
• LED Controller–The MSB is the passed bit, and the reset is the number of errors detected.

Trion® T20 BGA256 Development Board
When the FIFO core has available words, the design reads the data and compares it with the
expected data. If there are no errors, LED D6 is on; if errors are found, D6 blinks on and off
while LEDs D3 through D5 count the number of errors found (up to 127 errors). You can
force errors into the system by pressing pushbutton SW6. To reset, press pushbutton SW4.

Titanium Ti60 F225 Development Board
When the FIFO core has available words, the design reads the data and compares it with the
expected data. If there are no errors, LED D19 is on; if errors are found, D19 blinks on and
off while LEDs D16 through D18 count the number of errors found (up to 127 errors). You
can force errors into the system by pressing pushbutton SW7. To reset, press pushbutton
SW5.

www.efinixinc.com 21

FIFO Core User Guide

Table 19: Trion® Example Design Implementation
125 MHz clock constraint.

fMAX (MHz)FPGA Clock and
Read Mode

LUTs Memory
Blocks

I/Os

clk_i wr_clk_i rd_clk_i

Efinity®

Version(3)

Synchronous
Standard

250 4 15 143 – –

Synchronous
FWFT

257 4 15 145 – –

Asynchronous
Standard

336 4 16 – 184 163

T20
BGA256
C4

Asynchronous
FWFT

363 4 16 – 177 142

2020.1

Table 20: Titanium Example Design Implementation

fMAX (MHz)FPGA Clock and
Read Mode

Logic
and

Adders

Flip-
flops

Memory
Blocks

DSP48
Blocks

clk_i wr_clk_i rd_clk_i

Efinity®

Version(3)

Synchronous
Standard

241 201 2 0 411 – –

Synchronous
FWFT

269 202 2 0 353 – –

Asynchronous
Standard

280 274 2 0 – 360 406

Ti60 F225 ES
C3

Asynchronous
FWFT

309 278 2 0 – 409 338

2021.1

FIFO Testbench
You can choose to generate the testbench when generating the core in the IP Manager
Configuration window.

Note: You must include all .v files generated in the /testbench directory in your simulation.

The testbench reads data from the FIFO 100 times, checks each of them, and indicates a pass/
fail for the last 16 sets of data. Additionally, it indicates an overall pass/fail for the entire test.

(3) Using Verilog HDL.

www.efinixinc.com 22

FIFO Core User Guide

After running the simulation, the test prints the following message:

SYNC_CLK=1, MODE=STANDARD
 PIPELINE_REG=1, OUTPUT_REG=0
 OPTIONAL_FLAGS=1
85 PASSED: Read Data = 0x55
86 PASSED: Read Data = 0x56
87 PASSED: Read Data = 0x57
88 PASSED: Read Data = 0x58
89 PASSED: Read Data = 0x59
90 PASSED: Read Data = 0x5a
91 PASSED: Read Data = 0x5b
92 PASSED: Read Data = 0x5c
93 PASSED: Read Data = 0x5d
94 PASSED: Read Data = 0x5e
95 PASSED: Read Data = 0x5f
96 PASSED: Read Data = 0x60
97 PASSED: Read Data = 0x61
98 PASSED: Read Data = 0x62
99 PASSED: Read Data = 0x63
100 PASSED: Read Data = 0x64

#TEST PASSED

Note: If you use ModelSim to simulate the testbench, add the following line in the ModelSim command:

vlog -sv +define+SIM <example design directory>

www.efinixinc.com 23

FIFO Core User Guide

Revision History

Table 21: Revision History

Date Version Description

June 2021 4.0 Added note about including all .v generated in
testbench folder is required for simulation.
Updated resource utilization and performance table.
Updated example design output and implementation
table.
Added support for Titanium FPGAs and example
design for Titanium Ti60 F225 Development Board.
Updated for Efinity v2021.1.

December 2020 3.0 Updated user guide for Efinix® IP Manager which
includes added IP Manager topics, updated
parameters, and user guide structure.

August 2020 2.3 Updated the resource utilization and performance
table, and example design implementation table.

July 2020 2.2 Added FIFO core new feature, option to exclude
optional flags.
Updated default value for DEPTH and DATA_WIDTH
parameter.

July 2020 2.1 Updated simulation test print message.
Corrected the download the example design to the
board topic.

www.efinixinc.com 24

FIFO Core User Guide

Date Version Description

July 2020 2.0 Updated for FIFO Core v2.0.
Updated resource utilization and performance table.
Added note to parameters to indicate if it is only
available in FIFO core v2.0.
Updated block diagrams to include datacount_o,
rd_datacount_o, and wr_datacount_o signals.
Updated FIFO core file name.
Updated COMMON_CLOCK to SYNC_CLK.
Updated DEPTH default value to 512.
Updated DATA_WIDTH default value to 16.
Removed statement stating that FWFT mode is
undefined when COMMON_CLK is 0.
Updated OUTPUT_REG possible values. Added
description for FIFO v2.0.
Added PIPELINE_REG, OPTIONAL_FLAGS, and
FIFO_MODE parameters.
Added FWFT mode waveform for FIFO core v2.0 and
updated the description accordingly.
Updated asynchronous FIFO operation section to
include diagrams, descriptions, and examples for
FWFT mode.
Updated the reset topic to state that resetting does
not initialize rdata and specifying reset waveform as
standard mode.
Added latency section to describe the latency of the
output signal in detail.
Updated example design implementation table.

May 2020 1.1 Updated OUTPUT_REG description.
Updated MODE description.
Updated figure titles for synchronous FIFO operation
waveforms.

March 2020 1.0 Initial release.

www.efinixinc.com 25

	Contents
	Introduction
	Features
	Functional Description
	Ports
	Synchronous FIFO Operation
	Asynchronous FIFO Operation
	Programmable Full and Empty Signals
	Reset
	Datacount
	Latency
	Synchronous FIFO
	Asynchronous FIFO

	IP Manager
	Customizing the FIFO
	FIFO Example Design
	FIFO Testbench
	Revision History

