
DMA Controller Core
User Guide
UG-CORE-DMA-v2.0
January 2024
www.efinixinc.com

Copyright © 2024. All rights reserved. Efinix, the Efinix logo, the Titanium logo, Quantum, Trion, and Efinity are trademarks of Efinix, Inc. All other
trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com

Contents

Introduction... 3

Features..3

Device Support.. 3

Resource Utilization and Performance..4

Release Notes.. 4

Functional Description...5
Ports... 5
DMA Operation... 10

Direct Mode..11
Scatter-Gather...12

Channel Circular Buffer Mode.. 15
Priority-weighted Round-robin Scheduler... 15
Interrupt Control..16
DMA Controller Registers.. 16

Direct Mode Register Control Examples..18
SG Mode Register Control Examples...20

IP Manager.. 22

Customizing the DMA Controller..23
Buffer Size Settings... 24

DMA Controller Example Design..25
Set Up a USB-to-UART Module...27
Using this Example with the RISC-V SDK.. 28
Running the Example Design..28

DMA Controller Testbench.. 28

Revision History...29

DMA Controller Core User Guide

Introduction
The direct memory access (DMA) controller allows a hardware subsystem to access the main
memory with minimal monitoring from the central processing unit (CPU). This reduces
CPU workload when the system is required to transfer large amount of memory multiple
times. The DMA Controller core provides a mechanism to transfer data between memory
and AXI4-stream interface using direct mode or scatter-gather mode.

Use the IP Manager to select IP, customize it, and generate files. The DMA Controller core
has an interactive wizard to help you set parameters. The wizard also has options to create a
testbench and/or example design targeting an Efinix® development board.

Important: Open-source Java 64-bit runtime environment is required for generating the DMA Controller
core in the IP Manager. You can get the installer and instructions from:
• https://www.java.com/en/download/manual.jsp (Java 8)
• https://developers.redhat.com/products/openjdk/download (OpenJDK 8 or 11)
• http://jdk.java.net/16/ (OpenJDK 16)

Features
• Memory interface in AXI4 full-duplex or AXI3 half-duplex
• Programmable memory interface width
• Enhance bandwidth with hardware read and write queue
• Priority-weighted round robin scheduling
• Control and status register with APB3 interface
• Up to 8 channels of AXI4-stream interface
• Programmable stream interface width
• Supports direct and scatter-gather (SG) modes
• Includes example design targeting the Trion® T120 BGA576 Development Board

Device Support

Table 1: DMA Controller Core Device Support

FPGA Family Supported Device

Trion All

Titanium All

www.efinixinc.com 3

https://www.java.com/en/download/manual.jsp
https://developers.redhat.com/products/openjdk/download
http://jdk.java.net/16/

DMA Controller Core User Guide

Resource Utilization and Performance

Note: The resources and performance values provided are based on some of the supported FPGAs.
These values are just guidance and can change depending on the device resource utilization, design
congestion, and user design.

Table 2: Titanium Resource Utilization and Performance

FPGA Logic and
Adders

Flip-flops Memory
Blocks

DSP48 Blocks fMAX (MHz)(1) Efinity®

Version(2)

Ti60 F225 C4 2,628 2,307 10 0 223 2021.2

Table 3: Trion® Resource Utilization and Performance

FPGA Logic Utilization
(LUTs)

Registers Memory
Blocks

Multipliers fMAX (MHz)(1) Efinity®

Version(2)

T120 BGA576 C4 3,038 2,424 14 0 108 2021.2

Release Notes
You can refer to the IP Core Release Notes for more information about the IP core changes.
The IP Core Release Notes is available in the Efinity Downloads page under each Efinity
software release version.

Note: You must be logged in to the Support Portal to view the IP Core Release Notes.

(1) Using default parameter settings.
(2) Using Verilog HDL.

www.efinixinc.com 4

https://www.efinixinc.com/support/efinity.php

DMA Controller Core User Guide

Functional Description
The direct memory access memory controller has a two central buffer banks that stores
incoming data and outgoing data from each channel. The controller’s memory interface
width can be down-sized internally to improve fMAX and reduce required area. The priority
scheduling scheme in the DMA Controller core manages the AXI4-stream interface. It
determines which interface receives higher priority to serve and allows the stream's data to go
to memory interface.

Figure 1: DMA Controller Core Block Diagram

Clock and Reset Interface

AXI4-Stream
Interface

DMA Controller

Memory
InterfacePriority

Read
Bank

Ch 0
Ch 1
Ch 2
Ch 3
Ch 4
Ch 5
Ch 6
Ch 7

APB3 Interface

AXI4 and AXI3 Interface Write
Bank

Ports

Table 4: Clock and Reset Interface
n = Channel number.

Port Direction Description

clk Input DMA core operating clock.

reset Input Active high DMA core asynchronous reset.

ctrl_clk Input APB3 clock when APB3 interface operates in asynchronous mode.

ctrl_reset Input Active high APB3 reset when APB3 interface operates in asynchronous mode.

dat[n]_i_clk Input AXI4-stream input port clock when interface operates in asynchronous mode.

dat[n]_i_reset Input Active high AXI4-stream input port reset when interface operates in
asynchronous mode.

dat[n]_o_clk Input AXI4-stream output port clock when interface operates in asynchronous mode.

dat[n]_o_reset Input Active high AXI4-stream output port reset when interface operates in
asynchronous mode.

www.efinixinc.com 5

DMA Controller Core User Guide

Table 5: APB3 Interface
The APB interface is synchronous by default. Set the IP manager parameter to change to asynchronous.

Port Direction Description

ctrl_PADDR [13:0] Input APB3 Address.

ctrl_PENABLE Input Enable port. This signal indicates the second and subsequent cycles of
APB transfers.

ctrl_PSEL Input Select port. The APB bridge unit generates this signal to each peripheral
bus slave. It indicates that the slave device is selected and that a data
transfer is required.

ctrl_PWRITE Input Operation port.
0: APB read access
1: APB write access

ctrl_PWDATA [31:0] Input Write Data. This bus is driven by the peripheral bus bridge unit during
write cycles when PWRITE is HIGH.

ctrl_PREADY Output Ready port. The slave uses this signal to extend an APB transfer.

ctrl_PRDATA [31:0] Output Read Data port. The selected slave drives this bus during read cycles when
PWRITE is low.

ctrl_PSLVERROR Output This signal indicates a transfer failure but it is unused in DMA core.

Table 6: AXI4-Stream Interface
n = Channel number.

Port Direction Description

dat[n]_i_tvalid Input Indicates the master is driving a valid transfer. A transfer takes place when
both dat0_i_tvalid and dat0_i_tready are asserted.

dat[n]_i_tready Output Indicates that slave port can accept a transfer.

dat[n]_i_tdata [m-1:0] Input Payload from master port.
m = Memory Interface Width

dat[n]_i_tkeep [m-1:0] Input Byte qualifier that indicates whether content of the associated byte of
tdata is processed as part of the data stream.
m = Memory Interface Width

dat[n]_i_tdest [3:0] Input Routing information for the data stream.

dat[n]_i_tlast Input Indicates the boundary of a packet.

dat[n]_o_tvalid Output Indicates the master is driving a valid transfer. A transfer takes place when
both tvalid and dat0_i_tready are asserted.

dat[n]_o_tready Input Indicates that a slave port can accept a transfer.

dat[n]_o_tdata [m-1:0] Output Payload to slave port.
m = Memory Interface Width

dat[n]_o_tkeep [m-1:0] Output Byte qualifier that indicates whether content of the associated byte of data
is processed as part of the data stream.
m = Memory Interface Width

dat[n]_o_tdest [3:0] Output Provides routing information for the data stream.

dat[n]_o_tlast Output Indicates the boundary of a packet.

www.efinixinc.com 6

DMA Controller Core User Guide

Table 7: AXI4 Interface

Ports Direction Description

write_awvalid Input Indicates that the channel is signalling a valid write address and control
information.

write_awready Output Indicates that the controller is ready to accept an address and associated
control signals.

write_awaddr [31:0] Input The write address gives the address of the first transfer in a write/read
burst transaction.

write_awlen [7:0] Input Burst length. Indicates the exact number of transfers in a burst.
Determines the number of data transfers associated with the address.
Effective burst length = io_arw_payload_len + 1

write_awsize [2:0] Input Burst size. Indicates the size of each transfer in the burst.
3b000: 1 bytes
3b001: 2 bytes
3b010: 4 bytes
3b011: 8 bytes
3b100: 16 bytes
3b101: 32 bytes
3b110: 64 bytes
3b111: 128 bytes

write_awburst [1:0] Input Burst type. The burst type and the size information, determines how the
address for each transfer within the burst is calculated.
2b00: fixed burst
2b01: linear burst
2b10: wrap burst

write_awlock Input Reserved.

write_awcache [3:0] Input Memory type. This signal indicates how transactions are required to
progress through a system.

write_awprot [2:0] Input Protection type. This signal indicates the privilege and security level of the
transaction, and whether the transaction is a data access or an instruction
access.

write_awqos [3:0] Input The quality-of-service identifier.

write_region [3:0] Input Permits a single physical interface on a slave to be used for multiple logical
interfaces.

write_wvalid Input Write valid. Indicates that valid write data and strobes are available.

write_wready Output Write ready. Indicates that the slave can accept the write data.

write_wdata [n-1:0] Input Write data.
n = Memory Interface Width

write_wstrb [n-1:0] Input Write strobes. Indicates which byte lanes hold valid data. There is one
write strobe bit for each eight bits of the write data bus.
n = Memory Interface Width /8

write_wlast Input Write last. Indicates the last transfer in a write burst.

write_bvalid Input Write response valid. Indicates that the channel is signalling a valid write
response.

write_bready Output Response ready. Indicates that the master can accept a write response.

www.efinixinc.com 7

DMA Controller Core User Guide

Ports Direction Description

read_arvalid Input Indicates that the channel is signalling a valid read address and control
information.

read_arready Output Indicates that the controller is ready to accept an address and associated
control signals.

read_araddr [31:0] Input The read address gives the address of the first transfer in a write/read
burst transaction.

read_arlen [7:0] Input Burst length. Indicates the exact number of transfers in a burst.
Determines the number of data transfers associated with the address.
Effective burst length = io_arw_payload_len + 1

read_arsize [2:0] Input Burst size. Indicates the size of each transfer in the burst.
3b000: 1 bytes
3b001: 2 bytes
3b010: 4 bytes
3b011: 8 bytes
3b100: 16 bytes
3b101: 32 bytes
3b110: 64 bytes
3b111: 128 bytes

read_arburst [1:0] Input Burst type. The burst type and the size information, determines how the
address for each transfer within the burst is calculated.
2b00: fixed burst
2b01: linear burst
2b10: wrap burst

read_arlock Input Reserved.

read_awcache [3:0] Input Memory type. This signal indicates how transactions are required to
progress through a system.

read_awprot [2:0] Input Protection type. This signal indicates the privilege and security level of the
transaction, and whether the transaction is a data access or an instruction
access.

read_awqos [3:0] Input The quality-of-service identifier.

read_region [3:0] Input Permits a single physical interface on a slave to be used for multiple logical
interfaces.

read_rvalid Output Read address valid. Indicates that the channel is signalling valid read
address and control information.

read_rready Input Read ready. Indicates that the master can accept the read data and
response information.

read_rdata [n-1:0] Output Read data.
n = Memory Interface Width

read_rresp [1:0] Output Read response. Indicates the status of the read transfer. This controller
only responds 2b00 or OKAY.

read_rlast Output Read last. Indicates the last transfer in a read burst.

www.efinixinc.com 8

DMA Controller Core User Guide

Table 8: AXI3 Interface

Port Direction Description

axi_arwvalid Input Indicates that the channel is signalling a valid write/read address and
control information.

axi_arwready Output Indicates that the controller is ready to accept an address and associated
control signals.

axi_arwaddr [31:0] Input The write address gives the address of the first transfer in a write/read
burst transaction.

axi_arwlen [7:0] Input Burst length. Indicates the exact number of transfers in a burst.
Determines the number of data transfers associated with the address.
Effective burst length = io_arw_payload_len + 1

axi_arwsize [2:0] Input Burst size. Indicates the size of each transfer in the burst.
3b000: 1 bytes
3b001: 2 bytes
3b010: 4 bytes
3b011: 8 bytes
3b100: 16 bytes
3b101: 32 bytes
3b110: 64 bytes
3b111: 128 bytes

axi_arwburst [1:0] Input Burst type. The burst type and the size information, determines how the
address for each transfer within the burst is calculated.
2b00: Fixed burst
2b01: Linear burst
2b10: Wrap burst

axi_arwlock Input Reserved.

axi_arwcache [3:0] Input Memory type. This signal indicates how transactions are required to
progress through a system.

axi_arwprot [2:0] Input Protection type. This signal indicates the privilege and security level of the
transaction, and whether the transaction is a data access or an instruction
access.

axi_arwqos [3:0] Input The quality-of-service identifier.

axi_arwregion [3:0] Input Permits a single physical interface on a slave to be used for multiple logical
interfaces.

axi_arwwrite Input Indicates the channel is accepting a write or read transfer.
0: Read
1: Write

axi_wvalid Input Write valid. Indicates that valid write data and strobes are available.

axi_wready Output Write ready. Indicates that the slave can accept the write data.

axi_wdata [n-1:0] Input Write data.
n = Memory Interface Width

axi_wstrb [n-1:0] Input Write strobes. Indicates which byte lanes hold valid data. There is one
write strobe bit for each eight bits of the write data bus.
n = Memory Interface Width /8

axi_wlast Input Write last. Indicates the last transfer in a write burst.

www.efinixinc.com 9

DMA Controller Core User Guide

Port Direction Description

axi_bvalid Input Write response valid. Indicates that the channel is signalling a valid write
response.

axi_bready Output Response ready. Indicates that the master can accept a write response.

axi_rvalid Output Read address valid. Indicates that the channel is signalling valid read
address and control information.

axi_rready Input Read ready. Indicates that the master can accept the read data and
response information.

axi_rdata Output Read data.
n = Memory Interface Width

axi_rresp [1:0] Output Read response. Indicates the status of the read transfer. This controller
only responds 2b00 or OKAY.

axi_rlast Output Read last. Indicates the last transfer in a read burst

Table 9: Conduit Interface

Port Direction Description

io_[n]_descriptorUpdate Output Outputs a pulse to indicate that the descriptor transfer is complete.
This port is enabled only when parameter SG mode is enabled.
n is the channel number.

DMA Operation
The DMA Controller core operates in two modes, which are direct mode and scatter-gather
mode. You can choose the operation mode based on your application scenario. The scatter-
gather mode is disabled by default. You need to enable it before using this mode.

Transfer information like source address, destination address, channel selection, port
selection, and byte of transfer are programmed through the APB3 interface. Status
information, such as the BUSY state or progress of a transfer, can be retrieved through the
same interface. Although each channel can have an input port or an output port, both ports
cannot work in parallel due to the channel operation only allows it either in a read or a write
operation. When programmed as a read operation, the DMA controller retrieves data from
the main memory and outputs to AXI4-stream output interface. The AXI4-stream input
interface is idle during the read operation.

www.efinixinc.com 10

DMA Controller Core User Guide

Direct Mode
You can transfer a chunk of big-sized data by using the direct mode. This mode requires
you to program the DMA Controller core by providing the source or destination address,
number of bytes to transfer over, which channel you would like to use, and which AXI4-
stream ports you would like to use. After that, start the DMA Controller core to perform the
transfer.

Figure 2: Direct Mode Flow Diagram

Program DMA Register

DMA
channel
is busy

Start DMA

Poll BUSY Status

Start

End

You can continuously poll the channel status register to see if the channel is still performing
the transfer. The BUSY status deassert from high to low when the DMA Controller core is
done transferring the data.

www.efinixinc.com 11

DMA Controller Core User Guide

Scatter-Gather
The scatter-gather is used when an application is required to do multiple transfers in one-time
programming. Before starting the DMA Controller core, you must prepare a descriptor. A
descriptor contains information such as source or destination address, number of bytes to
transfer over, which channel you would like to use, and which AXI4-stream port you would
like to use. Multiple descriptors linked together and formed a linked-list. Each descriptor is
required to mention the address of the next descriptor so that the DMA Controller core can
look for the next descriptor when the current descriptor is served. The linked-list is usually
stored in the main memory.

Figure 3: Scatter-Gather Mode Flow Diagram

Program DMA Register

DMA
channel
is busy

Start DMA

Program Linked-List Descriptor[1]

Descriptor[N]

Descriptor[0]

Poll BUSY Status

Start

End

Unlike direct mode transfer, the DMA Controller core is out of the BUSY state once it runs
through the linked-list and complete all transfer of the descriptors.

www.efinixinc.com 12

DMA Controller Core User Guide

Descriptor Registers

Table 10: Descriptor Register Definition
All descriptor registers are 32-bit write operation and any unlisted bits are reserved bits.

Address
Offset

Bit Register Description

Status

31 DMASG_DESCRIPTOR_STATUS_COMPLETED
Indicates that the descriptor as complete and the controller stops linked-list execution if
this flag is set.

30 For AXI4-Stream to memory transfers, this bit indicates if the descriptor marks the end of
a received packet.
Can be used when the bit 13 of DMASG_CHANNEL_INPUT_CONFIG_STREAM is set.

0x00

[26:0] DMASG_DESCRIPTOR_STATUS_BYTES

Control

30 For memory to AXI4-Stream transfers, indicates if an end-of-packet should be sent at the
end of the transfer.

0x01

[25:0] DMASG_DESCRIPTOR_CONTROL_BYTES
Number of bytes (minus one) reserved at the descriptor FROM/TO addresses. For
example, if you want to transfer 10 bytes, this field should be set to 9.

From (LSB)0x02

[31:0] For memory to either memory or AXI4-Stream transfers, this is the memory address of
the input data.

From (MSB)0x03

[63:32] For memory to either memory or AXI4-Stream transfers, this is the memory address of
the input data.

To (LSB)0x04

[31:0] For memory or AXI4-Stream to memory transfers, this is the memory address of the
output data.

To (MSB)0x05

[63:32] For memory or AXI4-Stream to memory transfers, this is the memory address of the
output data.

Next (LSB)0x06

[31:0] Memory address of the next descriptor for execution.

Next (MSB)0x07

[63:32] Memory address of the next descriptor for execution.

www.efinixinc.com 13

DMA Controller Core User Guide

Descriptor Examples
The following code shows the descriptor structure example in C language.

struct dmasg_descriptor {
// See all DMASG_DESCRIPTOR_STATUS_* defines
// Updated by the DMA at the end of each descriptor and when a S -> M packet is completely
 transferred into memory
u32 status;
// See all DMASG_DESCRIPTOR_CONTROL_* defines
u32 control;
// For M -> ? transfers, memory address of the input data
u64 from;
// For ? -> M transfers, memory address of the output data
u64 to;
// Memory address of the next descriptor
u64 next;
}

You need to define the descriptor to either write to memory or read from memory.
Depending on whether it is a read or write operation:
• Memory to AXI4-Stream—The from register stores the target address of the memory,

and the to should be 0.
• AXI4-Stream to Memory—The to register stores the target address of the memory, and

the from should be 0.

The control register stores the number of bytes to be accessed.

The following descriptor examples show the linked-list operations:

Note: The dmasg_input_memory, dmasg_output_memory, dmasg_input_stream, are
dmasg_linked_list_start functions that are defined in the driver (dmasg.h) file of the SoC SDK.

Memory to AXI4-Stream Descriptor Example

volatile struct dmasg_descriptor descriptors1[FRAME_RATE+1] __attribute__ ((aligned (64)));
 for (int j=0; j<FRAME_RATE+1; j=j+1) {
 if(j == FRAME_RATE){
 descriptors1[j].status = DMASG_DESCRIPTOR_STATUS_COMPLETED;
 } else {
 descriptors1[j].control = (u32)((BUFFER_SIZE)-1) | 1 << 30;;
 descriptors1[j].from = (u32)(sb32 + (j *(BUFFER_SIZE)));
 descriptors1[j].to = 0;
 descriptors1[j].next = (u32) (descriptors1 + (j+1));
 descriptors1[j].status = 0;
 }
 }
 dmasg_input_memory (DMASG_BASE, ST32_OUT, sb32, 16);
 dmasg_output_stream(DMASG_BASE, ST32_OUT, 0, 0, 0, 1);
 dmasg_linked_list_start(DMASG_BASE, ST32_OUT, (u32) descriptors1);

AXI4-Stream to Memory Descriptor Example

volatile struct dmasg_descriptor descriptors0[FRAME_RATE+1] __attribute__ ((aligned (64)));
 for (int j=0; j<FRAME_RATE+1; j=j+1) {
 if(j == FRAME_RATE){
 descriptors0[j].status = DMASG_DESCRIPTOR_STATUS_COMPLETED;
 } else {
 descriptors0[j].control = (u32)((BUFFER_SIZE)-1) | 1 << 30;;
 descriptors0[j].from = 0;
 descriptors0[j].to = (u32)(db32 + (j *(BUFFER_SIZE)));
 descriptors0[j].next = (u32) (descriptors0 + (j+1));
 descriptors0[j].status = 0;
 }
 }
 dmasg_output_memory (DMASG_BASE, ST32_IN, db32, 16);
 dmasg_input_stream(DMASG_BASE, ST32_IN, 0, 1, 0);
 dmasg_linked_list_start(DMASG_BASE, ST32_IN, (u32) descriptors0);

www.efinixinc.com 14

DMA Controller Core User Guide

Memory to Memory Descriptor Example

volatile struct dmasg_descriptor descriptors2[FRAME_RATE+1] __attribute__ ((aligned (64)));
 for (int j=0; j<FRAME_RATE+1; j=j+1) {
 if(j == FRAME_RATE) {
 descriptors2[j].status = DMASG_DESCRIPTOR_STATUS_COMPLETED;
 } else {
 descriptors2[j].control = (u32)((BUFFER_SIZE)-1) | 1 << 30;;
 descriptors2[j].from = (u32)(sb32 + (j *(BUFFER_SIZE)));
 descriptors2[j].to = (u32)(db32 + (j *(BUFFER_SIZE)));
 descriptors2[j].next = (u32) (descriptors2 + (j+1));
 descriptors2[j].status = 0;
 }
 }
 dmasg_input_memory (DMASG_BASE, ST32_M2M, sb32, 16);
 dmasg_output_memory (DMASG_BASE, ST32_M2M, db32, 16);
 dmasg_linked_list_start(DMASG_BASE, ST32_M2M, (u32) descriptors2);

Channel Circular Buffer Mode
Circular buffer mode is used when an application is required to transfer exact amount of data
on a fixed start address. The DMA Controller core self-restarts when a transfer has completed
and start executing the transfer again with information provided from the previous transfer.
This mode is applicable in direct mode transfer.

Figure 4: Channel Circular Buffer Mode Flow Diagram

Program DMA Register

DMA
channel
is busy

Start DMA

Self Restart

Poll BUSY Status

Start

Priority-weighted Round-robin Scheduler
Multiple channels compete to get access to the main memory transfer. Therefore, you
can program the priority register to ensure that data stream with higher priority is served
accordingly. This scheduler is disabled by default. You can enable it in the IP manager
parameter to get the multiple data streams managed by the scheduler. Set the priority-
weighted round-robin scheduler in the DMASG_CHANNEL_PRIORITY register.

The scheduler prioritizes channel with a higher priority value. Additionally, the weight
value guarantees the higher priority data stream is served uninterruptedly correlated to the
byte_per_burst. For example, if the channel's byte_per_burst is 256 bytes, and the
programmed weight is 3, the channel can transfer 1024 ((weight+1) * byte_per_burst)
bytes without interruption from another channel.

www.efinixinc.com 15

DMA Controller Core User Guide

Interrupt Control
Each channel is capable to turn on interrupt signal upon data transfer completion. This can
further reduce CPU workload to keep monitoring on BUSY state of DMA Controller core.
The interrupt signal alerts the CPU and the CPU can react accordingly.

DMA Controller Registers

Table 11: Address Mapping
All registers are 32-bit and any unlisted bits are reserved bits.

Address
Offset

Bit Register Description Operation

DMASG_CHANNEL_INPUT_ADDRESS0x00

[31:0] Write source address. Write

DMASG_CHANNEL_INPUT_STREAM0x08

[7:0] Write inputs ports to identify physical input port to use. Write

DMASG_CHANNEL_INPUT_CONFIG

0 Use to transfer to AXI4-stream port. The bit is always set to 0.

12 0: Transfer from AXI4-stream port
1: Transfer from memory port

13 Completion on packet. Limits the descriptor to only contain one packet
and force its completion when it fully transferred into memory.

0x0C

14 Wait on Packet. Ensures the channel waits for the beginning of a packet
before capturing the data (avoid desync).

Write

DMASG_CHANNEL_OUTPUT_ADDRESS0x10

[31:0] Write the destination address. Write

DMASG_CHANNEL_OUTPUT_STREAM

[7:0] Write the outputs ports to identify the physical output port to use.

[15:8] Write the source port ID.

0x18

[23:16] Write the sink port ID.

Write

DMASG_CHANNEL_OUTPUT_CONFIG

0 Transfer to AXI4-stream port. The bit is always set to 0.

12 0: Transfer to AXI4-stream port
1: transfer to memory port

0x1C

13 Last bit. Specify end of packet to be sent at the end of a transfer.

Write

DMASG_CHANNEL_DIRECT_BYTES0x20

[31:0] Write the number of bytes to be transferred in direct mode. Write

DMASG_CHANNEL_STATUS

0 Set to 1 to start DMA in direct mode (also as a busy bit).

0x2C

1 Set to 1 to start self-restart.

Write

www.efinixinc.com 16

DMA Controller Core User Guide

Address
Offset

Bit Register Description Operation

2 Set to 1 to set a channel to stop itself.

4 Set to 1 to start a channel using a linked-list. Ensure linked-list support is
enabled by the channel.

0 1: Channel busy
0: Channel ready

Read

DMASG_CHANNEL_PRIORITY

[2:0] Set the priority of channel 0 to 7 (7 has the highest priority).

0x44

[10:8] Set the weight of channel 0 to 7 (7 has the highest priority).

Write

DMASG_CHANNEL_INTERRUPT_ENABLE

0 Enable interrupt at the end of each descriptor.

2 Enable interrupt when the channel is out of busy.

3 Enable interrupt when the status of descriptor is updated.

0x50

4 Enable interrupt when the channel done transferring a packet (AXI4-
stream to memory).

Write

DMASG_CHANNEL_INTERRUPT_PENDING

0 Interrupt mask status at the end of each descriptor.

2 Interrupt mask status when the channel is out of busy.

3 Interrupt mask status when the status of descriptor is updated.

4 Interrupt mask status when done transferring a packet (AXI4-stream to
memory)

Read

0 Clear interrupt mask at the end of each descriptor.

2 Clear interrupt mask when the channel is out of busy.

3 Clear interrupt mask when the status of descriptor is updated.

0x54

4 Clear interrupt mask when the channel done transferring a packet (AXI4-
stream to memory).

Write

0x60 DMASG_CHANNEL_PROGRESS_BYTES

[31:0] Read the numbers of bytes transferred for the current descriptor.
This register monitors transfer progress in SG mode only. Refer to
DMASG_CHANNEL_STATUS (bit 0) for Direct mode.

Read

DMASG_CHANNEL_LINKED_LIST_HEAD0x70

[31:0] Write the address of first descriptor in a linked list. Write

www.efinixinc.com 17

DMA Controller Core User Guide

Table 12: Channel base Address

Channel Offset

0 0x000

1 0x080

2 0x100

3 0x180

4 0x200

5 0x280

6 0x300

7 0x380

Direct Mode Register Control Examples

Figure 5: Single-Channel in Direct Mode

AX
I4

-S
tre

am
In

te
rfa

ce

M
em

or
y

In
te

rfa
ce

DMASG_CHANNEL_INPUT_STREAM
Register

DMASG_CHANNEL_INPUT_ADDRESS
Register

DMASG_CHANNEL_OUTPUT_ADDRESS
Register

DMASG_CHANNEL_OUTPUT_STREAM
Register

DMASG_CHANNEL_INPUT_CONFIG
Register

Channel n

DMASG_CHANNEL_OUTPUT_CONFIG
Register

Table 13: Single-Channel Memory to AXI4-Stream Port in Direct Mode

Step Description Related Register

1 Set the channel input source from memory port. DMASG_CHANNEL_INPUT_CONFIG
Set bit 12 to 1.

2 Set the start memory address to read. DMASG_CHANNEL_INPUT_ADDRESS

3 Set the output of channel to AXI4-Stream output
port.

DMASG_CHANNEL_OUTPUT_CONFIG
Set bit 12 to 0.

4 Configure the AXI4-Stream output port. DMASG_CHANNEL_OUTPUT_STREAM
For a single-channel controller, port ID is 0.

5 Set the number of bytes to transfer. DMASG_CHANNEL_DIRECT_BYTES

6 Start the DMA in direct mode. DMASG_CHANNEL_STATUS
Set bit 0 to 1. If you use circular buffer mode, set bit 1
to 1.

www.efinixinc.com 18

DMA Controller Core User Guide

Table 14: Single-Channel AXI4-Stream to Memory Port in Direct Mode

Step Description Related Register

1 Set the input of channel from AXI4-Stream port. DMASG_CHANNEL_INPUT_CONFIG
Set bit 12 to 0.

2 Configure the AXI4-Stream input port. DMASG_CHANNEL_INPUT_STREAM
For a single-channel controller, port ID is 0.

3 Set the output of channel to memory port. DMASG_CHANNEL_OUTPUT_STREAM
Set bit 12 to 1.

4 Set the start of memory address to write to. DMASG_CHANNEL_OUTPUT_ADDRESS

5 Set the number of bytes to transfer. DMASG_CHANNEL_DIRECT_BYTES

6 Start the DMA in direct mode. DMASG_CHANNEL_STATUS
Set bit 0 to 1. If you use circular buffer mode, set bit 1
to 1.

Table 15: Single-Channel Memory to Memory Port in Direct Mode

Step Description Related Register

1 Set the channel input source from memory port. DMASG_CHANNEL_INPUT_CONFIG
Set bit 12 to 1.

2 Set the start memory address to read. DMASG_CHANNEL_INPUT_ADDRESS

3 Set the output of channel to memory port. DMASG_CHANNEL_OUTPUT_CONFIG
Set bit 12 to 1.

4 Set the start of memory address to write to. DMASG_CHANNEL_OUTPUT_ADDRESS

5 Set the number of bytes to transfer. DMASG_CHANNEL_DIRECT_BYTES

6 Start the DMA in direct mode. DMASG_CHANNEL_STATUS
Set bit 0 to 1. If you use circular buffer mode, set bit 1
to 1.

www.efinixinc.com 19

DMA Controller Core User Guide

SG Mode Register Control Examples

Figure 6: Single-Channel in SG Mode
AX

I4
-S

tre
am

In
te

rfa
ce

M
em

or
y

In
te

rfa
ce

DMASG_CHANNEL_INPUT_STREAM
Register

Current Descriptor

DMASG_CHANNEL_LINKED_LIST_HEAD
Register

DMASG_CHANNEL_OUTPUT_STREAM
Register

DMASG_CHANNEL_INPUT_CONFIG
Register

Channel n

DMASG_CHANNEL_OUTPUT_CONFIG
Register

“From” Register

Li
nk

ed
-li

st

“To” Register

Table 16: Single-Channel Memory to AXI4-Stream Port in SG Mode

Step Description Related Register

1 Define the linked-list of descriptors in the
memory.

See Memory to AXI4-Stream Descriptor Example on
page 14.

2 Set the channel input source from memory port. DMASG_CHANNEL_INPUT_CONFIG
Set bit 12 to 1.

3 Set the output of channel to AXI4-Stream port. DMASG_CHANNEL_OUTPUT_CONFIG
Set bit 12 to 0.

4 Configure the AXI4-Stream output port. DMASG_CHANNEL_OUTPUT_STREAM
For a single-channel controller, port ID is 0.

5 Set the start address of the first descriptor. DMASG_CHANNEL_LINKED_LIST_HEAD

6 Start the DMA in SG mode. DMASG_CHANNEL_STATUS
Set bit 4 to 1.

www.efinixinc.com 20

DMA Controller Core User Guide

Table 17: Single-Channel AXI4-Stream to Memory Port in SG Mode

Step Description Related Register

1 Define the linked-list of descriptors in the
memory.

See AXI4-Stream to Memory Descriptor Example on
page 14.

2 Set the input of channel from AXI4-Stream port. DMAG_CHANNEL_INPUT_CONFIG set bit 12 to 0

3 Configure the AXI4-Stream input port. DMASG_CHANNEL_INPUT_STREAM For a single-
channel controller, port ID is 0.

4 Set the output of channel to memory port. DMASG_CHANNEL_OUTPUT_CONFIG
Set bit 12 to 1.

5 Set the start address of the first descriptor DMASG_CHANNEL_LINKED_LIST_HEAD

6 Start the DMA in SG mode. DMASG_CHANNEL_STATUS
Set bit 4 to 1.

Table 18: Single-Channel Memory to Memory Port in SG Mode

Step Description Related Register

1 Define the linked-list of descriptors in the
memory.

See Memory to Memory Descriptor Example on page
15.

2 Set the channel input source from memory port. DMASG_CHANNEL_INPUT_CONFIG
Set bit 12 to 1.

3 Set the output of channel to memory port. DMASG_CHANNEL_OUTPUT_CONFIG
Set bit 12 to 1

4 Set the start address of the first descriptor DMASG_CHANNEL_LINKED_LIST_HEAD

5 Start the DMA in SG mode. DMASG_CHANNEL_STATUS
Set bit 4 to 1.

www.efinixinc.com 21

DMA Controller Core User Guide

IP Manager
The Efinity® IP Manager is an interactive wizard that helps you customize and generate
Efinix® IP cores. The IP Manager performs validation checks on the parameters you set to
ensure that your selections are valid. When you generate the IP core, you can optionally
generate an example design targeting an Efinix development board and/or a testbench. This
wizard is helpful in situations in which you use several IP cores, multiple instances of an IP
core with different parameters, or the same IP core for different projects.

Note: Not all Efinix IP cores include an example design or a testbench.

Generating the DMA Controller Core with the IP Manager
The following steps explain how to customize an IP core with the IP Configuration wizard.

1. Open the IP Catalog.
2. Choose Bridge and Adaptors > DMA Controller core and click Next. The IP

Configuration wizard opens.
3. Enter the module name in the Module Name box.

Note: You cannot generate the core without a module name.

4. Customize the IP core using the options shown in the wizard. For detailed information
on the options, refer to the Customizing the DMA Controller section.

5. (Optional) In the Deliverables tab, specify whether to generate an IP core example design
targeting an Efinix® development board and/or testbench. These options are turned on by
default.

6. (Optional) In the Summary tab, review your selections.
7. Click Generate to generate the IP core and other selected deliverables.
8. In the Review configuration generation dialog box, click Generate. The Console in the

Summary tab shows the generation status.

Note: You can disable the Review configuration generation dialog box by turning
off the Show Confirmation Box option in the wizard.

9. When generation finishes, the wizard displays the Generation Success dialog box. Click
OK to close the wizard.

The wizard adds the IP to your project and displays it under IP in the Project pane.

Generated Files
The IP Manager generates these files and directories:
• <module name>_define.vh—Contains the customized parameters.
• <module name>_tmpl.v—Verilog HDL instantiation template.
• <module name>_tmpl.vhd—VHDL instantiation template.
• <module name>.v—IP source code.
• settings.json—Configuration file.
• <kit name>_devkit—Has generated RTL, example design, and Efinity® project targeting

a specific development board.
• Testbench—Contains generated RTL and testbench files.

www.efinixinc.com 22

DMA Controller Core User Guide

Customizing the DMA Controller
The core has parameters so you can customize its function. You set the parameters in the
General tab of the core's IP Configuration window.

Table 19: DMA Controller Core Parameters (General Tab)

Parameter Options Description

Efinix AXI3 Interface
Wrapper

Disable, Enable Disable: Use AXI-4 full duplex memory interface.
(Default)
Enable: Use AXI-3 half duplex memory interface.

Memory Interface External
Width

8, 16, 32, 64,
128, 256, 512

Memory interface width that connects externally.
Default: 128

Buffer Bank Words 128, 256, 512,
1024, 2048, 4096

Buffer depth.
Default: 1024

Buffer Bank Width 32, 64, 128 Buffer data width in bits.
Default: 32

Memory Write Queue Enable, Disable Enable hardware queue to improve overall write
throughput.
Default: Disable

Memory Read Queue Enable, Disable Enable hardware queue to improve overall read
throughput.
Default: Disable

APB3 Interface in
Asynchronous

Enable, Disable Enabling asynchronous makes the APB3 signals and
interrupt to be on a separate clock domain.
Default: Disable

Priority-Weighted Round
Robin Scheduler

Enable, Disable Enable priority-weighted, round-robin scheduler.
Default: Disable

www.efinixinc.com 23

DMA Controller Core User Guide

Table 20: DMA Controller Core Parameters (Channel Tab)

Parameter Options Description

Channel n Enable Enable, Disable Instantiate channel on the DMA controller.
Default: Disable for all except Channel 0

Channel n Asynchronous
Mode

Enable, Disable Run channel with asynchronous clock.
Default: Disable

Channel n SG Mode Enable, Disable Enable scatter-gather mode.
Default: Disable

Channel n Output Port Enable, Disable Enable AXI4-stream input interface.
Default: Enable

Channel n Input Port Enable, Disable Enable AXI4-stream output interface.
Default: Enable

Channel n Data width 8, 16, 32, 64,
128, 256, 512

AXI4-stream interface width.
Default: 32

Channel n Buffer Size 128, 256, 512, 1024,
2048, 4096, 8192

Set the buffer size for channel 0. Any other enabled
channel follows channel 0 buffer size. See Buffer Size
Settings on page 24 for more information.
Default: 1024

Channel n Max Burst Size 16, 32, 64, 128,
256, 512, 1024

Maximum number of bytes within a burst transfer.
Default: 64

Channel n Circular Buffer
Mode

Enable, Disable Enable circular buffer/self-restart mode.
Default: Disable

Buffer Size Settings
You need to set the Channel Buffer Size corresponding to the Buffer Bank Size. The
equations are as follows:

Total Channel Buffer Size = Channels Buffer Size x No. of enabled channel
Buffer Bank Size = Buffer Bank Words x Buffer Bank Width (in byte) x Bank Count

Total Channel Buffer Size ≤ Buffer Bank Size

Note:
• Total Channel Buffer Size = Total Buffer Bank Size is recommended for resource optimization.

However, the Total Channel Buffer Size can be lower than the Total Buffer Bank Size.
• Bank Count is fixed to 2.

Example:

• Buffer Bank Words = 128
• Buffer Bank Width = 128 bit (16 byte)

Buffer Bank Size = 128 x 16 x 2 = 4096 bytes

Depending on the number of enabled channels, you can set the Channels Buffer Size to:
• One channel: Channels Buffer Size ≤ 4096
• Two channels: Channels Buffer Size ≤ 2048
• Three channels: Channels Buffer Size ≤ 1024

www.efinixinc.com 24

DMA Controller Core User Guide

DMA Controller Example Design
You can choose to generate the example design when generating the core in the IP Manager
Configuration window. Compile the example design project and download the .hex or .bit
file to your board.

Note: The Efinity IP Manager will prompt a message asking you to update the Sapphire SoC. For this
example design, do not update the Sapphire SoC.

The example design uses a fixed set of parameter settings as shown in the following table.

Table 21: Example Design Parameter Settings

IP Manager Parameter Setting

Efinix AXI3 Interface Wrapper Disable

Memory Interface External Width 64

Buffer Bank Words 512

Buffer Bank Width 32

Memory Write Queue Disable

Memory Read Queue Disable

APB3 Interface in Asynchronous Disable

Priority-Weighted Round Robin Scheduler Disable

Channel 0 and 1 Enable Enable

Channel 0 and 1 Asynchronous Mode Enable

Channel 0 and 1 SG Mode Enable

Channel 0 and 1 Output Port Channel 0: Enable
Channel 1: Disable

Channel 0 and 1 Input Port Channel 0: Disable
Channel 1: Enable

Channel 0 and 1 Data width 32

Channel 0 and 1 Buffer Size 1024

Channel 0 and 1 Max Burst Size 256

Channel 0 and 1 Circular Buffer Mode Disable

www.efinixinc.com 25

DMA Controller Core User Guide

The example designs the target the Trion® T120 BGA576 Development Board. The example
design consists of a RISC-V SoC and the DMA Controller core. The instantiated DMA
Controller core has two channels, channel 0 with AXI4-stream output port and channel 1
with AXI4-stream input port. Each port is connected with a loopback tester which is a FIFO
buffer, to fetch the data from the output of channel 0 to the input of channel 1.

Figure 7: Example Design Block Diagram

USB-to-UART

Sapphire
SoC

AXI4

DMA Controller

APB3

T120 BGA576 Development Board

T120 FPGA SPI Flash

LPDDR3

JTAG

PMOD

Table 22: Example Design Implementation

fMAX (MHz)(3)FPGA LUTs Registers Memory
Blocks

Multipliers

System Clock SD Host

Efinity®

Version(4)

T120
BGA576 C4

9,341 8,348 85 4 66 108 2021.2

(3) Using default parameter settings.
(4) Using Verilog HDL.

www.efinixinc.com 26

DMA Controller Core User Guide

Set Up a USB-to-UART Module
The Trion® T120 BGA576 Development Board does not have a USB-to-UART converter,
therefore, you need to use a separate USB-to-UART converter module. A number of modules
are available from various vendors; any USB-to-UART module should work.

Figure 8: Connect the UART Module to PMOD Header J15

J15 (PMOD)

GPIOT_RXN20
Ground

UART
to USB
Module

Power
Supply

RX

Ground
TX

GPIOT_RXP20

123456

789101112
Ground

USB
Connector

Power
Switch

1. Connect the UART module to the PMOD port J15
• RX—GPIOT_RXP20, which is pin 1 on PMOD J15
• TX—GPIOT_RXN20, which is pin 7 on PMOD J15
• Ground—Use ground pin 5 or 11 on PMOD J15.

2. Plug the UART module into a USB port on your computer. The driver should install
automatically if needed.

Finding the COM Port (Windows)
1. Type Device Manager in the Windows search box.
2. Expand Ports (COM & LPT) to find out which COM port Windows assigned to the

UART module; it is listed as USB Serial Port (COMn) where n is the assigned port
number. Note the COM number.

Finding the COM Port (Linux)
In a terminal, type the command:

dmesg | grep ttyUSB

The terminal displays a series of messages about the attached devices.

usb <number>: <adapter> now attached to ttyUSB<number>

There are many USB-to-UART converter modules on the market. Some use an FTDI chip
which displays a message similar to:

usb 3-3: FTDI USB Serial Device converter now attached to ttyUSB0

However, the Trion® T120 BGA576 Development Board also has an FTDI chip and gives
the same message. So if you have both the UART module and the board attached at the same
time, you may receive three messages similar to:

usb 3-3: FTDI USB Serial Device converter now attached to ttyUSB0
usb 3-2: FTDI USB Serial Device converter now attached to ttyUSB1
usb 3-2: FTDI USB Serial Device converter now attached to ttyUSB2

In this case the second 2 lines (marked by usb 3-2) are the development board and the first
line (usb 3-3) is the UART module.

www.efinixinc.com 27

DMA Controller Core User Guide

Using this Example with the RISC-V SDK
Before working with the software included with this example design, you should already be
familiar with using the Sapphire SoC and RISC-V SDK. Specifically, you should know how
to:
• Launch Efinity RISC-V Embedded Software IDE
• Import the DMA design example software project (FreeRTOS is not required)

Note: Ensure that the dmasg option is available in the Import Sample Project
Wizard when importing the project.

• Build the software project.
• Launch the debug script and debug the example using the OpenOCD debugger.
• Open a UART terminal.

Learn more: Refer to the related chapter of the Sapphire RISC-V SoC Hardware and Software User Guide
for detailed instructions on how to perform these tasks.

Running the Example Design
After you debug the example software, the design transfers 512 KB of data with the direct
mode and followed by the scatter-gather mode.

The UART terminal prints the following message if the test is successful:

DMA+SOC TEST
Running DMA Direct Mode Loopback Test...
DMA Direct Mode Loopback Test Passed!
Running DMA SG Mode Loopback Test...
DMA SG Mode Loopback Test Passed!

DMA Controller Testbench
You can choose to generate the testbench when generating the core in the IP Manager
Configuration window.

Note: You must include all .v files generated in the /testbench directory in your simulation.

Efinix provides a simulation script for you to run the testbench quickly using the Modelsim
software. To run the Modelsim testbench script, run vsim -do modelsim.do in a
terminal application. You must have Modelsim installed on your computer to use this script.

The example design includes a simulation testbench, tb_soc.v, which simulates the example
design. After running the simulation, the test prints the following message:

 0 ---
 0 [EFX_INFO]: Start executing DMA TEST
 0 [EFX_INFO]: Memory controller and memory model in this simulation do not show real
 performance or hardware and thus may impact the behaviour of DMA
 0 ---
 3577550 [EFX_INFO]: Transferring in Direct Mode detected
 3577550 [EFX_INFO]: Transferring in Direct Mode detected
10241630 [EFX_INFO]: Transferring in SG Mode detected
11241630 [EFX_INFO]: TEST PASSED!

www.efinixinc.com 28

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=SAPPHIREDS

DMA Controller Core User Guide

Revision History

Table 23: Revision History

Date Version Description

January 2024 2.0 Added Buffer Size Settings section. (DOC-1570 and DOC-1629)

November 2023 1.9 Corrected DMASG_CHANNEL_INPUT_CONFIG Address Mapping.
(DOC-1534)

September 2023 1.8 Updated DMASG_CHANNEL_PROGRESS_BYTES,
DMASG_CHANNEL_INPUT_CONFIG and
DMASG_CHANNEL_OUTPUT_CONFIG description. (DOC-1442)
Updated example design configuration.

June 2023 1.7 Added Device Support and release notes sections. (DOC-1234)
Added 512 support for Memory Interface External Width.

March 2023 1.6 Improved register address mapping and register control
examples. (DOC-1167)
Updated IP Manager parameters.
Added information about setting up USB-to-UART module and
RISC-V required prerequisites.
Updated testbench output message.
Added SG mode linked-list descriptor examples.

February 2023 1.5 Added note about the resource and performance values in the
resource and utilization table are for guidance only.

December 2022 1.4 Added New in Version topic.

January 2022 1.3 Updated resource utilization table. (DOC-700)

December 2021 1.2 Added io_[n]_descriptorUpdate port.
Updated the DMA Controller core IP Manager parameters.

October 2021 1.1 Added note about open-source Java 64-bit runtime environment
is required for generating the DMA Controller core in the IP
Manager.
Added note to state that the fMAX in Resource Utilization and
Performance, and Example Design Implementation tables were
based on default parameter settings.
Updated design example target board to production Titanium
Ti60 F225 Development Board and updated Resource Utilization
and Performance, and Example Design Implementation tables.
(DOC-553)

June 2021 1.0 Initial release.

www.efinixinc.com 29

	Contents
	Introduction
	Features
	Device Support
	Resource Utilization and Performance
	Release Notes
	Functional Description
	Ports
	DMA Operation
	Direct Mode
	Scatter-Gather
	Descriptor Registers
	Descriptor Examples

	Channel Circular Buffer Mode
	Priority-weighted Round-robin Scheduler
	Interrupt Control
	DMA Controller Registers
	Direct Mode Register Control Examples
	SG Mode Register Control Examples

	IP Manager
	Customizing the DMA Controller
	Buffer Size Settings

	DMA Controller Example Design
	Set Up a USB-to-UART Module
	Using this Example with the RISC-V SDK
	Running the Example Design

	DMA Controller Testbench
	Revision History

