
AN 046: Reset Guidelines for
Efinix® FPGAs

AN046-v1.1
November 2022
www.efinixinc.com

Copyright © 2022. All rights reserved. Efinix, the Efinix logo, the Titanium logo, Quantum, Trion, and Efinity are trademarks of Efinix, Inc. All other
trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com

Contents

Introduction... 3

Flipflop Set/Reset.. 3
infer-sync-set-reset Synthesis Option... 5

Reset Synchronizer.. 5

Reset Sequencing.. 8

Generating Reset Signals Internally..8
Using the PLL Locked Signal... 8
Using a Counter.. 9
Using I/O Pins..10

Feeding the Reset Input Pin...10
Single Pin Reset Generation.. 11

Initializing Flipflop Value.. 12
Initializing Flipflops with a Reset...12
Initializing Flipflops with RTL... 13

Resetting other Blocks.. 14
8-bit Shift Registers...14
Embedded Memory Blocks... 14
DSP and Multiplier Blocks... 15

Revision History...15

AN 046: Reset Guidelines for Efinix FPGAs

Introduction
Titanium and Trion® FPGAs enters user mode after the CDONE pin goes high and tUSER has
elapsed. Efinix recommends that you issue a reset to your design in this initial stage to:
• Ensure that the registers are cleared.
• Avoid registers capturing unintended data input due to clock glitches or unstable clocks
• If required, you can also initialize the registers with the intended values during reset.

You can use an external or internally-generated signal as the reset signal. Either way, the
reset should only be released after the device has gone into user mode. This application note
explains how to implement reset in your design.

Flipflop Set/Reset
Flipflops in eXchangeable Logic and Routing (XLR) cells are used to implement register
functions in synchronous designs. Through the set/reset (SR) port, flipflops support the
following functions without the need for additional logic resources:
• Synchronous reset
• Synchronous set
• Asynchronous reset
• Asynchronous set

Additionally, you can configure the flipflops to expect an active-high or active-low set/reset
signals. The set/reset signals can drive the SR port directly.

Figure 1: Typical Flipflop Port Connections

EFX_FF

D
CE
CLK
SR

d_in
clk_ena

clk
rst_n

Q q_out

Learn more: Refer to the Quantum Titanium Primitives User Guide and Quantum Trion Primitives User
Guide for details on the EFX_FF primitive, flipflop ports, and parameters.

www.efinixinc.com 3

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TIPRIM
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PRIMITIVES
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PRIMITIVES

AN 046: Reset Guidelines for Efinix FPGAs

The following table shows the flopflop set/reset implementations examples and the
corresponding parameter settings for EFX_FF primitive.

Table 1: Flipflop Reset Implementation Examples and EFX_FF Primitive Settings

Reset
Implementation

EFX_FF
Parameter Setting

Verilog HDL Example VHDL Example

Active-Low
Synchronous Reset

SR_POLARITY = 0
SR_SYNC = 1
SR_VALUE = 0

always@(posedge clk)
begin
 if (!rst_n)
 q_out <= 1'b0;
 else
 q_out <= d_in;
end

process (clk)
begin
 if rising_edge(clk) then
 if rst_n = '0' then
 q_out <= '0';
 else
 q_out <= d_in;
 end if;
 end if;
end process;

Active-High
Synchronous Reset

SR_POLARITY = 1
SR_SYNC = 1
SR_VALUE = 0

always@(posedge clk)
begin
 if (rst)
 q_out <= 1'b0;
 else
 q_out <= d_in;
end

process (clk)
begin
 if rising_edge(clk) then
 if rst = '1' then
 q_out <= '0';
 else
 q_out <= d_in;
 end if;
 end if;
end process;

Active-Low
Synchronous Set

SR_POLARITY = 0
SR_SYNC = 1
SR_VALUE = 1

always@(posedge clk)
begin
 if (!rst_n)
 q_out <= 1'b1;
 else
 q_out <= d_in;
end

process (clk)
begin
 if rising_edge(clk) then
 if rst_n = '0' then
 q_out <= '1';
 else
 q_out <= d_in;
 end if;
 end if;
end process;

Active-Low
Asynchronous
Reset

SR_POLARITY = 0
SR_SYNC = 0
SR_VALUE = 0

always@(posedge clk,
 negedge rst_n)
begin
 if (!rst_n)
 q_out <= 1'b0;
 else
 q_out <= d_in;
end

process (clk, rst_n)
begin
 if rst_n = '0' then
 q_out <= '0';
 elsif rising_edge(clk) then
 q_out <= d_in;
 end if;
end process;

Active-Low
Asynchronous Set

SR_POLARITY = 0
SR_SYNC = 0
SR_VALUE = 1

always@(posedge clk,
 negedge rst_n)
begin
 if (!rst_n)
 q_out <= 1'b1;
 else
 q_out <= d_in;
end

process (clk, rst_n)
begin
 if rst_n = '0' then
 q_out <= '1';
 elsif rising_edge(clk) then
 q_out <= d_in;
 end if;
end process;

Note: Avoid implementing multiple conditions in your source code as it requires additional
logic. Examples of multiple conditions include implementing both reset and set synchronously or
asynchronously.

www.efinixinc.com 4

AN 046: Reset Guidelines for Efinix FPGAs

infer-sync-set-reset Synthesis Option
The reset signal can drive the flipflop SR port directly. However, the Efinity® software can
also use additional resources so that the set/reset signal feeds the D input port instead of the
SR port for more flexibility. To allow Efinity software to implement this feature, set the
--infer-sync-set-reset synthesis option to 0 (disable) in the Project Editor's Synthesis tab.

Learn more: Refer to the Efinity Synthesis User Guide for additional details on the synthesis options.

The following figure shows the example of an additional logic implementation where the
reset signal is connected to the D input port through an additional logic.

Figure 2: Reset Signal Feeding D Input Port

EFX_FF

D
CE
CLK
SR

1
clk

0

d_in
rst_n Q q_out

Reset Synchronizer
You can use a reset synchronizer circuitry to synchronize an external asynchronous reset
signal to the clock domain of your synchronous logic design. With the reset synchronizer,
the reset assertion to the flipflops is asynchronous, but the de-assertion is synchronous to the
clock. The reset synchronizer can also filter glitches that might occur in an asynchronous
reset signal and prevent metastability issues. Different clock domains should not share the
same reset synchronizer.

The following examples describe common reset synchronizer circuitries with active-low or
active-high reset input and output. You can extend the duration of the reset signal assertion
by adding additional flipflop stages.

www.efinixinc.com 5

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH

AN 046: Reset Guidelines for Efinix FPGAs

Active-Low Reset Input and Active-Low Reset Output

Figure 3: Active-Low Reset Input and Active-Low Reset Output Connections

D

 CLK

SR (Reset)

1 Q Synchronous
reset
output

Clock

Asynchronous reset input

D

 CLK

SR (Reset)

Q

Verilog HDL Example

always@(posedge clk, negedge rst_n)
begin
 if (!rst_n)
 begin
 q_1 <= 1’b0;
 q_2 <= 1’b0;
 end
 else
 begin
 q_1 <= 1’b1;
 q_2 <= q_1;
 end
end

VHDL Example

process (clk, rst_n)
begin
 if rst_n = '0' then
 q_1 <= '0';
 q_2 <= '0';
 elsif rising_edge(clk) then
 q_1 <= '1';
 q_2 <= q_1;
 end if;
end process;

Active-Low Reset Input and Active-High Reset Output

Figure 4: Active-Low Reset Input and Active-High Reset Output Connections

D

 CLK

SR (Set)

0 Q Synchronous
reset
output

Clock

Asynchronous reset input

D

 CLK

SR (Set)

Q

Verilog HDL Example

always@(posedge clk, negedge rst_n)
begin
 if (!rst_n)
 begin
 rst_q_1 <= 1’b1;
 rst_q_2 <= 1’b1;
 end
 else
 begin
 rst_q_1 <= 1’b0;
 rst_q_2 <= rst_q_1;
 end
end

VHDL Example

process (clk, rst_n)
 begin
 if rst_n = '0' then
 q_1 <= '1';
 q_2 <= '1';
 elsif rising_edge(clk) then
 q_1 <= '0';
 q_2 <= q_1;
 end if;
 end process;

www.efinixinc.com 6

AN 046: Reset Guidelines for Efinix FPGAs

Active-High Reset Input and Active-Low Reset Output

Figure 5: Active-High Reset Input and Active-Low Reset Output Connections

D

 CLK

SR (Reset)

1 Q Synchronous
reset
output

Clock

Asynchronous reset input

D

 CLK

SR (Reset)

Q

Verilog HDL Example

always@(posedge clk, posedge rst)
begin
 if (rst)
 begin
 rst_q_1 <= 1’b0;
 rst_q_2 <= 1’b0;
 end
 else
 begin
 rst_q_2 <= rst_q_1;
 rst_q_1 <= 1’b1;
 end
end

VHDL Example

process (clk, rst)
 begin
 if rst = '1' then
 q_1 <= '0';
 q_2 <= '0';
 elsif rising_edge(clk) then
 q_1 <= '1';
 q_2 <= q_1;
 end if;
 end process;

Active-High Reset Input and Active-High Reset Output

Figure 6: Active-High Reset Input and Active-High Reset Output Connections

D

 CLK

SR (Set)

0 Q Synchronous
reset
output

Clock

Asynchronous reset input

D

 CLK

SR (Set)

Q

Verilog HDL Example

always@(posedge clk, posedge rst)
begin
 if (rst)
 begin
 q_1 <= 1'b1;
 q_2 <= 1'b1;
 end
 else
 begin
 q_1 <= 1'b0;
 q_2 <= q_1;
 end
end

VHDL Example

process (clk, rst)
 begin
 if rst = '1' then
 q_1 <= '1';
 q_2 <= '1';
 elsif rising_edge(clk) then
 q_1 <= '0';
 q_2 <= q_1;
 end if;
 end process;

www.efinixinc.com 7

AN 046: Reset Guidelines for Efinix FPGAs

Reset Sequencing
Some designs with more than one clock domain requires the logic in different clock domains
to be released from reset in a particular order. For these designs, you can implement reset
sequencing. The reset sequencing is done by cascading reset synchronizers of the respective
clock domains. The following figure illustrates an example where the reset for logic A under
the clock domain A is released first, then followed by logic B under the clock domain B.

Figure 7: Reset Sequencing

D
 CLK
SR (Reset)

1 Q

Clock A
Asynchronous

reset_n
(active-low)

Synchronous
reset_n A

Synchronous
reset_n BD

 CLK
SR (Reset)

Q

User
Logic A

D
 CLK
SR (Reset)

1 Q

Clock B

D
 CLK
SR (Reset)

Q

User
Logic B

Generating Reset Signals Internally
This section describes ways to implement internally generated reset signals. You can use a
PLL, a counter, or an output pin to trigger resets.

Using the PLL Locked Signal
If you use a PLL to clock the flipflops, the flipflops must be held in reset until the PLL
is locked and the clock output is stable. You can use the PLL locked signal to gate the
reset signal feeding the flipflops. Add a counter to hold the registers in reset even after
configuration is done until tUSER has elapsed. The counter also acts as a reset synchronizer,
ensuring the reset de-assertion is synchronous to the PLL clock output.

Figure 8: Using the PLL Locked Signal as Gated Reset

Clkout

Locked

Clk
Data In

FPGA

PLL

Gated
Resetreset_n

Data OutQ
External
Clock

Clock

Counter SR

www.efinixinc.com 8

AN 046: Reset Guidelines for Efinix FPGAs

You need to calculate the number of PLL output clock cycles required to ensure the reset
signal is de-asserted after tUSER elapsed. The following example calculates the required
number of PLL output clock cycles for a Titanium FPGA (tUSER = 25 μs) with a PLL output
clock frequency of 50 MHz.

Clock cycles required = tUSER/ PLL output clock period = 25 μs / (1/50 MHz) = 1,250

The counter should hold the reset for at least 1,250 clock cycles.

Verilog HDL Example

always@(posedge clkout, negedge rst_n)
begin
 if (!rst_n)
 begin
 rst_n_sync <= 1'b0;
 counter <= 11'b0;
 end
 else
 begin
 if (counter < 1250)
 counter <= counter + 1'b1;
 else
 rst_n_sync <= 1'b1;
 end
end

VHDL Example

process (clk, rst_n)
begin
 if rst_n = '0' then
 rst_n_sync <= '0';
 counter <= (others => '0');
 elsif rising_edge(clk) then
 if (counter <1250) then
 counter <= counter + 1;
 else
 rst_n_sync <= '1';
 end if;
 end if;
end process;

There may be times when the PLL loses lock, or the reset_n signal is triggered while the
FPGA is in user mode. In these situations, the reset counter restarts the count on the number
of cycles to wait before releasing the registers from reset. The counter starts after the PLL
regains lock or the reset_n signal is de-asserted.

Using a Counter
You can use a counter to generate a reset signal to hold your design in reset after
configuration has completed and automatically releases the design after tUSER has elapsed.

Figure 9: Using a Counter to Perform a Reset

D
 CLK

SR

Data In
FPGA

Reset

Data OutQExternal
Clock

Counter

www.efinixinc.com 9

AN 046: Reset Guidelines for Efinix FPGAs

Using I/O Pins
You can also use an output pin to generate a signal that indicates when the device goes into
the user mode. This signal can be used as a reset signal to your design.

Feeding the Reset Input Pin

Figure 10: Driving the Reset Input Pin with an Output Pin

Reset
Synchronizer

User Logic

External
Connection

0

FPGA

Overview flow of driving the reset input pin with an output pin:

1. The I/O pins are tri-stated with an internal weak pull-up during configuration.

Important: Include a weak pull-up resistor around 10 kΩ on the board if both reset
input and output pins used do not support weak pull-up during configuration, for
example, LVDS configured as GPIO pins in Trion FPGAs.

2. The core logic is released first when the configuration is complete, while the I/O pins are
still tri-stated with weak pull-up.

3. The synchronous logic in your design is held in reset until the I/O pins are released,
during which the output pin generates an asynchronous reset signal by driving the input
pin low.

4. The asynchronous reset signal feeds a reset synchronizer to generate a synchronous active-
high or active-low reset signal to the synchronous logic in your design.

To generate the reset signal and feed the reset input pin of your design, connect an output pin
to the reset input pin at the board level. Drive this output pin low internally in your design.
Before compiling your design, turn off the Release Tri-States before Reset programming
option in the Project Editor's Bitstream Generation tab. Turning this option off ensures the
core logic is ready before the I/O pins are released and prevents glitches at output pins when
the configuration completes and the device transitions into user mode.

You can also combine the reset from the output pin with other external resets such as the
system reset.

Figure 11: Driving the Reset Input Pin with an Output Pin and the System Reset

Reset
Synchronizer

User Logic

External
Connection

System
Reset

0

FPGA

www.efinixinc.com 10

AN 046: Reset Guidelines for Efinix FPGAs

Single Pin Reset Generation
You can combine the input and output pin functions as discussed in the previous section into
one single pin. To perform a reset with a single pin, add a bidirectional pin in your design in
the Efinity Interface Designer. In your RTL code, drive the pin’s output buffer low, and the
output enable (OE) high. Connect the pin’s input buffer to the reset synchronizer as the reset
input.

Important: To prevent contention, do not drive this pin externally.

Figure 12: Driving the Reset with a Single Bidirectional Pin

Reset
Synchronizer

Core FabricGPIO Block

Pull-up
Resistor

Bidirectional
Pin 0

1

FPGA

Note: The internal weak pull-up resistor is turned on automatically during configuration. You do not need
to enable the weak pull-up of the input buffer setting in the Interface Designer.

Important: LVDS configured as GPIO pins in Trion FPGAs do not have an internal weak pull-up. You must
include an external 10 kΩ pull-up resistor on the board.

The following example code shows how the bidirectional pin is connected to a design with
the reset driving a reset synchronizer.

Verilog HDL Example

module single_pin_rst (
input clk, bidir_IN,
output bidir_OUT, bidir_OE,
…
);
…
reg rst_q_1, rst_q_2;
wire bidir_OUT = 1'b0;
wire bidir_OE = 1'b1;
…
always@(posedge clk, posedge
 bidir_IN)
begin
 if (bidir_IN)
 begin
 rst_q_1 <= 1'b1;
 rst_q_2 <= 1'b1;
 end
 else
 begin
 rst_q_1 <= 1'b0;
 rst_q_2 <= rst_q_1;
 end
end
…
endmodule

VHDL Example

library IEEE;
use IEEE.std_logic_1164.all;

entity single_pin_rst is
 port (clk, bidir_IN: in
 STD_LOGIC;
 bidir_OUT: out STD_LOGIC:='0';
 bidir_OE: out STD_LOGIC:='1';
 …
);
end single_pin_rst;

architecture reset_sync of
 single_pin_rst is
signal rst_q_1, rst_q_2: STD_LOGIC;

begin
 process (clk, bidir_IN)
 begin
 if bidir_IN = '1' then
 rst_q_1 <= '1';
 rst_q_2 <= '1';
 elsif rising_edge(clk) then
 rst_q_1 <= '0';
 rst_q_2 <= rst_q_1;
 end if;
 end process;
 …
end reset_sync;

www.efinixinc.com 11

AN 046: Reset Guidelines for Efinix FPGAs

Initializing Flipflop Value
The flipflops are cleared when the FPGA enters user mode. If required, you can initialize the
flipflops with a logic 1 using RTL code or a reset.

Note: It is prefereable to use a reset to initialize the flipflop value because the hardware implementation
does not require additional logic compared to using RTL. Additionally, using a reset allows you to re-
initialize the flipflops if needed.

Initializing Flipflops with a Reset
You can use the reset signal to initialize the flipflops in your design. The following code
example shows how resetting the design also sets the flipflop to a logic 1 before starting an
operation.

Verilog HDL Example

always@(posedge clk)
begin
 if (!rst_n)
 q_out <= 1'b1;
 else
 q_out <= d_in;
end

VHDL Example

process (clk)
begin
 if rising_edge(clk) then
 if rst_n = '0' then
 q_out <= '1';
 else
 q_out <= d_in;
 end if;
 end if;
end process;

www.efinixinc.com 12

AN 046: Reset Guidelines for Efinix FPGAs

Initializing Flipflops with RTL
Typically, you initialize flipflops with RTL codes for simulation but it is also synthesizable
by the Efinity software. The Efinity software implements additional logic during synthesis to
ensure the output is initialized to the desired value. The following figure and example codes
show the implementation result with additional logic to initialize the output to logic 1.

Figure 13: Initializing Flipflops with Additional Logic in RTL

D

 CLK

SR (Reset)

Q

rst_n
(active low)

Verilog HDL Example 1

reg q_out = 1'b1;
always@(posedge clk)
begin
 if (!rst_n)
 q_out <= 1'b0;
 else
 q_out <= d_in;
end

Verilog HDL Example 2

initial
begin
 q_out <= 1'b1;
end

always@(posedge clk)
begin
 if (!rst_n)
 q_out <= 1'b0;
 else
 q_out <= d_in;
end

VHDL Example

signal q_out: STD_LOGIC := '1';
…
 process (clk)
 begin
 if rising_edge(clk) then
 if rst_n = '0' then
 q_out <= '0';
 else
 q_out <= d_in;
 end if;
 end if;
 end process;

www.efinixinc.com 13

AN 046: Reset Guidelines for Efinix FPGAs

Resetting other Blocks
Other than the flipflops, you can also reset and/or initialize other logic blocks such as the
shift register, embedded memory, and DSP/multiplier block.

Note: Efinix recommends that you keep the reset asserted until the FPGA is in user mode and the clock is
stable to avoid the embedded memory and DSP/multiplier blocks driving out unintended data.

8-bit Shift Registers
The EFX_SRL8 primitive in Titanium FPGAs allows you to implement an 8-bit shift register
function in XLR cells. The 8-bit shift register content can be initialized with the EFX_SRL8
primitive, so the reset is not required for content initialization.

Additional logic is required if you implement the 8-bit shift register function in the XLR cell
through your own RTL code.

Learn more: Refer to the Quantum Titanium Primitives User Guide for details on instantiating 8-bit shift
register using the EFX_SRL8 primitive, and on how to initialize the shift register content.

Embedded Memory Blocks
The Titanium FPGA memory blocks support asynchronous and synchronous reset of the
RAM output, and asynchronous reset of the RAM output register. The RAM output and
RAM output register reset share the same reset input port but can be enabled independently.
The embedded memory block in the true-dual-port mode has two reset ports, one for port A
and the other for port B. Asserting the reset signal does not clear the RAM content.

You can initialize the memory block content for Trion and Titanium FPGAs when
instantiating through the primitives.

Learn more: Refer to the Quantum Titanium Primitives User Guide for details on instantiating the
embedded memory block using the EFX_RAM10 or EFX_DPRAM10 primitive and how to reset or initialize
the RAM content.

Learn more: Refer to the Quantum Trion Primitives User Guide for details on instantiating the embedded
memory block using the EFX_RAM_5K or EFX_DPRAM_5K primitive and how to initialize the RAM content.

www.efinixinc.com 14

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TIPRIM
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TIPRIM
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PRIMITIVES

AN 046: Reset Guidelines for Efinix FPGAs

DSP and Multiplier Blocks
The Titanium DSP blocks include a reset port that supports synchronous and asynchronous
reset. This reset port can drive the reset for registers A, B, C, OP, P, W, and O. You can
enable or disable the reset for each register independently. You can enable the synchronous
reset and reset the registers together with other sequential logic in your design using the
system reset when the FPGA goes into user mode.

The Trion multiplier blocks include reset ports to set or reset registers A, B, and O.
The registers support synchronous and asynchronous reset or set. You can enable the
synchronous reset and reset the registers together with other sequential logic in your design
through the system reset when the FPGA goes into user mode.

Learn more: Refer to the Quantum Titanium Primitives User Guide for details on instantiating the
DSP block using the EFX_DSP48, EFX_DSP24 or EFX_DSP12 primitive and how to enable reset for the
registers.

Learn more: Refer to the Quantum Trion Primitives User Guide for details on instantiating the multiplier
block using the EFX_MULT primitive and details on the reset/set ports.

Revision History

Table 2: Revision History

Date Version Description

November 2022 1.1 Fixed typo in the Verilog HDL example for Using the
PLL Locked Signal. (DOC-1034)

June 2022 1.0 Initial release.

www.efinixinc.com 15

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TIPRIM
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PRIMITIVES

	Contents
	Introduction
	Flipflop Set/Reset
	infer-sync-set-reset Synthesis Option

	Reset Synchronizer
	Reset Sequencing
	Generating Reset Signals Internally
	Using the PLL Locked Signal
	Using a Counter
	Using I/O Pins
	Feeding the Reset Input Pin
	Single Pin Reset Generation

	Initializing Flipflop Value
	Initializing Flipflops with a Reset
	Initializing Flipflops with RTL

	Resetting other Blocks
	8-bit Shift Registers
	Embedded Memory Blocks
	DSP and Multiplier Blocks

	Revision History

