
Using the Floating-Point
Converter Example

AN039-v1.0
February 2022
www.efinixinc.com

Copyright © 2021. All rights reserved. Efinix, the Efinix logo, the Titanium logo, Quantum, Trion, and Efinity are trademarks of Efinix, Inc. All other
trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com

Contents

Introduction... 3

Functional Description...5
Number Formats..5
Operations..6
Ports... 7
Customizing the Floating-Point Converter.. 8

Required Hardware... 8

Set Up the Hardware...9

Program the Development Board... 11

View the Design in the Debugger.. 12

Revision History...14

Using the Floating-Point Converter Example

Introduction
Binary floating-point arithmetic is commonly used to represent real numbers on computers
because it can represent a wide range of numbers. When implemented in FPGAs, however,
floating-point can use considerable logic resources. Therefore, designers use fixed-point
because of its better performance and lesser resource utilization. Essentially, a floating-point
number is converted to a fixed-point before an operation. The result is then converted back
to a floating-point for compatibility with other systems.

Efinix provides example design that demonstrates the conversion between floating-point and
fixed-point numbers. The design targets the Titanium Ti60 F225 Development Board and
Trion® T120 BGA576 Development Board. The example design includes Efinity Virtual I/O
Debugger core for customizing and monitoring the design.

Features
• Floating-point to fixed-point conversion
• Fixed-point to floating-point conversion
• Binary floating-point complies with IEEE 754 standard
• Supports floating-point of single-precision (32-bit) and double-precision (64-bit)
• Supports all floating-point numbers
• Supports a fixed-point width of 3 to 64 bits
• Optional asynchronous reset and clock enable ports for both float-to-fixed and fixed-to-

float converters
• Optional output ports indicating overflow, underflow, not-a-number (NaN), infinity,

zero, and denormalized number in float-to-fixed converter
• Fully-pipelined design with six pipeline stages
• RTL design in Verilog HDL
• Round to nearest, ties away from zero rounding rule

www.efinixinc.com 3

Using the Floating-Point Converter Example

Trion Performance and Resource Utilization
FPGA Mode / Width Logic

Utilization
Memory
Blocks

Multipliers fMAX (Mhz) Efinity
Version

Double-precision to
32.32 fixed-point

662 0 0 207.4

Double-precision to
16.16 fixed-point

358 0 0 254.4

Single-precision to
32.32 fixed-point

518 0 0 230.5

Single-precision to
16.16 fixed-point

330 0 0 266.6

32.32 fixed-point to
double-precision

660 0 0 204.1

16.16 fixed-point to
double-precision

313 0 0 245.0

32.32 fixed-point to
single-precision

468 0 0 210.3

T120 F576
C4

16.16 fixed-point to
single-precision

295 0 0 220.8

2021.2

Titanium Performance and Resource Utilization
FPGA Mode / Width Logic and

Adders
Memory
Blocks

DSP48
Blocks

fMAX (Mhz) Efinity
Version

Double-precision to
32.32 fixed-point

662 0 0 537.9

Double-precision to
16.16 fixed-point

358 0 0 712.0

Single-precision to
32.32 fixed-point

518 0 0 680.1

Single-precision to
16.16 fixed-point

330 0 0 827.1

32.32 fixed-point to
double-precision

660 0 0 547.5

16.16 fixed-point to
double-precision

313 0 0 690.2

32.32 fixed-point to
single-precision

468 0 0 550.5

Ti60 F225
C4

16.16 fixed-point to
single-precision

295 0 0 730.6

2021.2

www.efinixinc.com 4

Using the Floating-Point Converter Example

Functional Description
The reference design contains two modules, a floating-point to fixed-point converter and a
fixed-point to floating-point converter.

Float-to-Fixed Conversion
The float-to-fixed converter converts a floating-point number into a fixed-point number. The
converter accepts all floating-point numbers as input. The converter indicates special cases
using output signals as listed in Table 1: Float-to-Fixed Converter Ports on page 7.
The rounding behavior of the converter follows the "round to nearest, ties away from zero"
rule. The source file for the float-to-fixed converter, float_to_fixed.v, is in the floating-
point-converter-<version>/rtl/ directory.

Fixed-to-Float Conversion
The fixed-to-float converter converts a fixed-point number to a floating-point number. The
converter uses the "round to nearest, ties away from zero" rounding rule. The source file
for the float-to-fixed converter, fixed_to_float.v, is in the floating-point-converter-
<version>/rtl/ directory.

Number Formats
Floating-Point Format
The example design supports single-precision and double-precision floating-point formats
defined by the IEEE 754 standard. The data width of the single-precision format is 32-bit,
including 1 sign bit, an 8-bit exponent, and a 23-bit mantissa. For double-precision, the data
width of the exponent and mantissa is extended to 11 bits and 52 bits, respectively.

Fixed-Point Format
A fixed-point number comprises an integer and a fractional part. The integer uses two's
complement representation, but the fractional part is always unsigned. If a 48-bit fixed-point
number has 16 bits in the integer part and 32 bits in the fractional part, the number format
can be specified using 16.32. The supported total number of bits in this reference design is 3
to 64.

The following formula gives the value of a fixed-point number:

value = integer + fraction/(2width of fraction)

For example, for a 16.32 fixed-point number, if the data of the integer part and the fractional
part are 0xFFE2 and 0x4CCCCCCD, respectively, the value of this fixed-point number is
-29.7.

www.efinixinc.com 5

Using the Floating-Point Converter Example

Operations
Float-to-Fixed Converter Operation Example
The float-to-fixed converter is a fully pipelined design that takes six cycles to convert a
number. In the following figure, 0x7f800000 is assigned to input port float_val
using a non-blocking assignment. The data appears at the input port after one clock cycle.
The conversion results are available at output ports after 6 clock cycles. Because the data
0x7f800000 represents a positive infinity in a single-precision format, the converter asserts
the overflow and infinity signals, and the fixed-point output is set to the maximum.

Figure 1: Float-to-Fixed Conversion Timing Diagram Example

FFFF 0000 FFFF FF800000

7FFF 0000 7FFF 7FFF0000

7F800000 FFDA687F 00000000 47000000 08000000 46FFFFFF 00000001

clk

rstn

clk_cn

float_val[31:0]

overflow

underflow

nan

infinity

denorm

zero

fixed_fraction[15:0]

fixed_integer[15:0]

Fixed-to-Float Converter Operation Example
The fixed-point to floating-point converter is a fully pipelined design with six pipeline stages.
In the following figure, a fixed-point number is assigned to the input ports using a non-
blocking assignment. Six cycles later, the result, 0x41e053C8, is available at the output port.
The converter accepts a fixed-point number every cycle.

Figure 2: Fixed-to-Float Conversion Timing Diagram Example

0A79 9E0A 954E 592F 2B9A 9BF3A817

001C 0020 0004 002D 030B 01FA00FE

41E053C8 42027828 4092A9C0 423564BC 437EA817 4442CAE7 43FD4DFA

clk

rstn

clk_cn

fixed_fraction[15:0]

fixed_integer[15:0]

float_val[31:0]

www.efinixinc.com 6

Using the Floating-Point Converter Example

Ports

Table 1: Float-to-Fixed Converter Ports

Port Direction Description

clk Input System clock.

rstn Input Asynchronous active low reset.

clk_en Input Active high clock enable.

float_val Input Floating-point number input.

overflow Output Overflow flag. Indicates that the floating-point input exceeds the range of fixed-
point number output. This signal goes high when:
• Input value is greater than or equals to 2INT_WID-1

• Input value is smaller than -2INT_WID-1

• Input number is infinity.

Depending on the sign bit, the value of fixed-point output becomes either
maximum or minimum when the overflow flag is set.

underflow Output Underflow flag. Indicates that the floating-point input is too small and cannot be
represented by the fixed-point output.
This signal goes high when: BIAS minus FRA_WID is higher than or equal to the
exponent part of the floating-point input. BIAS is an exponent bias defined in IEEE
754. The bias in single precision is +127, and +1023 for double precision.
The fixed-point output becomes all zero when underflow flag is set.

nan Output This signal goes high when the floating-point input is NaN. The fixed-point output
become all zero when this is set.

infinity Output This signal goes high when the floating-point input is positive infinity or negative
infinity. The overflow flag is also set at the same time.
Depending on the sign bit, value of the fixed-point output become either the
maximum or minimum when this signal is set.

denorm Output This signal goes high when the floating-point input is a denormalized number.
Fixed-point output become all zero when this is set.

zero Output This signal goes high when the floating-point input is exactly zero.

fixed_fraction Output Fractional part of the fixed-point output. The data is unsigned.

fixed_integer Output Integer part of the fixed-point output. Two's complement representation is used.

Table 2: Fixed-to-Float Converter Ports

Port Direction Description

clk Input System clock.

rstn Input Asynchronous active low reset.

clk_en Input Active high clock enable.

float_val Input Floating-point number output.

fixed_fraction Input Fractional part of the fixed-point input. The data is unsigned.

fixed_integer Output Integer part of the fixed-point input. Two's complement representation is used.

www.efinixinc.com 7

Using the Floating-Point Converter Example

Customizing the Floating-Point Converter
You can further customize the modules using the following parameters in the source files.

Table 3: Float-to-Fixed Converter Parameters

Parameter Type Options Description

FLOAT_FMT String float, double Sets the floating-point format.

INT_WID Integer 1 - 63 The width of integer part of fixed-point output.
The total width of integer and fractional part should greater than 2.

FRA_WID Integer 1 - 63 The width of fractional part of fixed-point output.
The total width of integer and fractional part should be greater than 2.

Table 4: Fixed-to-Float Converter Parameters

Parameter Type Options Description

FLOAT_FMT String float, double Sets the floating-point format.

INT_WID Integer 1 - 63 The width of integer part of fixed-point input.
The total width of integer and fractional part should greater than 2.

FRA_WID Integer 1 - 63 The width of fractional part of fixed-point input.
The total width of integer and fractional part should be greater than 2.

Required Hardware
The example designs use the following hardware:

• Titanium Ti60 F225 Development Board or Trion® T120 BGA576 Development Board
• 1 USB type-C cable (Ti60 F225 board) or USB micro type-B cable (T120 BGA576 board)
• Universal AC to DC power adapter

www.efinixinc.com 8

Using the Floating-Point Converter Example

Set Up the Hardware
The example design does not require additional hardware to be set up with the development
board other than the power supply and the USB cable connection to the computer. However,
Efinix recommends that you use the default jumper settings for the development boards.

Figure 3: Titanium Ti60 F225 Development Board Hardware Setup

Ti60 F225
Development

Board

Power
Supply

J14, J15,
J16

J3

J6

J10
J8

J9

J4

J13

J7
J11

J5

Computer

Power Source
Attach standoffs1

2

3

4

5
SW4

Figure 4: Trion® T120 BGA576 Development Board Hardware Setup

Power Supply

MIPI CSI RX
Channel 0

P9

On/Off

T120
J4

Power
Source

J5
J6

J12

Computer

T120 BGA576
Development Board

Attach standoffs1

2

3

4

5

www.efinixinc.com 9

Using the Floating-Point Converter Example

1. Attach standoffs to the board if you have not already done so.
2. Depending your board, connect the following jumpers:

Table 5: Titanium Ti60 F225 Development Board Jumper Settings

Header Short Pins

J3 1 and 2, 3 and 4, 5 and 6

J4 1 and 2

J5 1 and 2

J6 3 and 4

J7 3 and 4

J8 5 and 6

J9 5 and 6

J10 5 and 6

J11 5 and 6

J13 1 and 2

J14 Unconnected

J15 1 and 2

J16 Unconnected

Table 6: Trion® T120 BGA576 Development Board Jumper Settings

Header Short Pins

J4 9 and 10

J5 6 and 6

J6 3 and 4

J12 2 and 3

3. Ensure the board power switch is turned off, then connect the 12 V power cable to the
board connector and to a power source.

4. Connect the following USB header to the USB port of your computer.
• J12—Titanium Ti60 F225 Development Board
• J20—Trion® T120 BGA576 Development Board

5. Turn on the board's power switch.

www.efinixinc.com 10

Using the Floating-Point Converter Example

Program the Development Board
The Efinix development boards are pre-loaded with a demonstration design. To use the
Floating-Point Converter example design, you must program the design into the board.

1. Turn on the development board.
2. Download the example design file, floating_point_converter-v<version>.zip from the

Support Center.
3. Unzip the file into your working directory.
4. Open the project in the Efinity software and review it.
5. Use the Efinity® Debugger to download the bitstream file to your board. The example

includes bitstream files for:

Bitstream File Module Development Board

../fixed2float_ti/fixed2float_ti.bit Fixed-to-float Titanium Ti60 F225 Development Board

../float2fixed_ti/float2fixed_ti.bit Float-to-fixed Titanium Ti60 F225 Development Board

../fixed2float_ti/fixed2float.bit Fixed-to-float Trion® T120 BGA576 Development Board

../float2fixed_ti/float2fixed.bit Float-to-fixed Trion® T120 BGA576 Development Board

Learn more: Instructions on how to use the Efinity® software is available in the Support Center.

www.efinixinc.com 11

http://www.efinixinc.com/support

Using the Floating-Point Converter Example

View the Design in the Debugger
All input and output ports except for the system clock, are connected to a Virtual I/O
Debugger. You can enter any number using the Virtual I/O Debugger to validate the results.

Learn more: Refer to the Debug Perspective: Virtual I/O section of the Efinity Software User Guide for
more information on how to use the Virtual I/O Debugger.

The following figure illustrates the Virtual I/O Debugger example of a float-to-fixed
converter operation. Start the design by asserting the clock enable signal (clk_en) and
deasserting the reset signal (rstn). 0x7f800000 value is added to the float source which
means a positive infinity in the single-precision floating-point format. The converter asserts
the overflow and infinity signals, and the fixed-point output is set to the maximum.

www.efinixinc.com 12

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE

Using the Floating-Point Converter Example

The following figure illustrates the Virtual I/O Debugger example of a fixed-to-float
converter operation. You start the design by asserting the clock enable signal (clk_en) and
deasserting the reset signal (rstn). The value of the fixed-point number input in the figure is
-30+19660/(216)≈-29.700. It is converted into a single-precision floating-point number with
data 0xc1ed99a0. The decimal value for the floating-point number is approximately -29.7,
according to the IEEE 754 standard.

www.efinixinc.com 13

Using the Floating-Point Converter Example

Revision History

Table 7: Revision History

Date Version Description

February 2022 1.0 Initial release.

www.efinixinc.com 14

	Contents
	Introduction
	Functional Description
	Number Formats
	Operations
	Ports
	Customizing the Floating-Point Converter

	Required Hardware
	Set Up the Hardware
	Program the Development Board
	View the Design in the Debugger
	Revision History

