
AN 022: Using the Ruby
SoC with Frame Buffer
Example Design
AN022-v1.0
August 2020
www.efinixinc.com

Copyright © 2020. All rights reserved. Efinix, the Efinix logo, Quantum, Trion, and Efinity are trademarks of Efinix, Inc. All other trademarks and
service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com

Contents

Introduction... 3
Required Hardware... 4
Required Software... 4
Download and Install the Example Design... 4

Functional Description...5

Set Up the Hardware...6

Connecting the Raspberry Pi Cable.. 7

Program the Trion® T120 BGA324 Development Board...8

Using the Software Example...8
Using this Example with the RISC-V SDK...8
Create a New Project..9

Import Project Settings (Optional)...9
Enable Debugging.. 10
Build...11

Import the Debug Configuration..12
Control the Display... 13

Revision History...13

AN 022: Using the Ruby SoC with Frame Buffer Example Design

Introduction
The Ruby SoC with Frame Buffer example design illustrates how to use a RISC-V processor
to control video, generated by a Raspberry Pi camera, displayed on an HDMI monitor. The
RTL design targets the Trion® T120 BGA324 Development Board.

The SoC with Frame Buffer example design consists of 2 parts: an RTL design that
implements the hardware and targets the Trion® T120 BGA324 Development Board and a
software application that lets you interactively control the video displayed on the HDMI
monitor.

Figure 1: Ruby SoC with Frame Buffer RTL Design Block Diagram

Ruby SoC

DDR Reset
Controller

Core

Frame
Buffer

Controller

Frame
Buffer

T120 FPGA

MIPI
RX

JTAG
User
Tap

DRAM
Module

HDMI
Monitor

Raspberry Pi
v2 Camera

LVDS to
HDMI Bridge

LVDS
TX

FPGA Support
The Ruby RISC-V SoC and frame buffer example design supports Trion® T120 FPGAs only.

Resource Utilization and Performance
FPGA Logic

Utilization
(LUTs)

Memory
Blocks

fMAX (MHz) Language Efinity
Version

T120 F324 I4 20,189 225 53.8 Verilog HDL 2020.1

www.efinixinc.com 3

AN 022: Using the Ruby SoC with Frame Buffer Example Design

Required Hardware
The example design uses the following hardware from the
Trion® T120 BGA324 Development Kit:
• Trion® T120 BGA324 Development Board
• Raspberry Pi Camera Connector Daughter Card
• MIPI and LVDS Expansion Daughter Card
• Raspberry Pi v2 camera module
• 15-pin flat cable
• Micro-USB cable
• 12 V power adapter

You also need the following hardware, which you provide yourself:
• USB-to-UART module
• 3 jumper wires
• 1080p monitor with HDMI connector
• HDMI cable
• Computer with Efinity® software installed

Required Software
The example design uses the following software:
• RISC-V SDK for Windows or Ubuntu
• Efinity® software version 2020.1

Note: Refer to the Ruby RISC-V SoC Hardware and Software User Guide for instructions on installing the
RISC-V SDK.

Download and Install the Example Design
The Ruby SoC with Frame Buffer example design includes a hardware example and a
software example.
• Hardware example—The hw directory includes an Efinity® project and a .hex file for

programming the board.
• Software example—The sw directory includes a makefile project and an .elf file for

OpenOCD debugging.

1. Download the example design file, t120f324-riscv-frame-buffer-v<version>.zip, from
the Support Center.

2. Unzip the file into your working directory.
3. The software project requires files that are included with the RISC-V SoC package. Copy

the RiscV_wPiCam directory (which is in RiscV_PiCam/sw) into the soc_Ruby/
soc_Ruby_sw/software/standalone directory.

www.efinixinc.com 4

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=RUBYUG

AN 022: Using the Ruby SoC with Frame Buffer Example Design

Functional Description
The Ruby SoC with Frame Buffer example design integrates the Ruby SoC with a custom
APB3 peripheral (the frame buffer controller), a frame buffer, and the DDR Reset Controller
core. The frame buffer controller block controls the frame buffer, which stores data and sends
it to the monitor.

With the UART peripheral, you can use a terminal to send commands to the RISC-V
processor. These commands control the video display on the monitor, such as cropping the
height or width, setting the display location, adding a filter, etc. An I2C peripheral sends/
receives camera control commands to/from the Raspberry Pi camera.

The RISC-V processor controls the frame buffer through the APB3 bus. The frame buffer
controls the LPDDR3 traffic to store the image date that streams in RGB from the camera.
The frame buffer also off-loads image data to the HDMI monitor.

Figure 2: Ruby SoC Peripherals

Ruby SoC

UART SPI
Master

APB3

DDR Reset
Controller

Core

DRAM
Module

Frame
Buffer

Controller

OpenOCD
Debugger

Memory Bus

I2C Master
& Slave

I2C
Camera

I2C
HDMI

VexRiscv Core

Telnet
Terminal

Flash
Device

HDMI
MonitorCamera

T120 FPGA

Note: The instructions in this example design assume that you are familiar with the Ruby SoC and the
RISC-V SDK.

www.efinixinc.com 5

AN 022: Using the Ruby SoC with Frame Buffer Example Design

Set Up the Hardware
The following figure shows the hardware setup steps. If you have not already done so, attach
standoffs to the board.

Figure 3: Hardware Setup

Power
Supply

Raspberry Pi
Camera Connector

Daughter Card

MIPI CSI RX
Channel 0

P6

Raspberry Pi
v2 Camera

On/Off

HDMI

T120
12

2

3

1

Power
Source

13

14

4

J4

J5

J6
SW1

5

Monitor

Micro USB

Computer
MIPI and LVDS
Expansion
Daughter Card

P2

LVDS RX
(Bank 2D)

7

6
11

UART to USB Module

RX

Ground
TX

139

240
TX

RX

GND
8

J10

J3 J2

9

10

Important: Make sure that the Trion® T120 BGA324 Development Board is turned off before connecting
any cards or cables.

www.efinixinc.com 6

AN 022: Using the Ruby SoC with Frame Buffer Example Design

Set Up the Camera
1. Connect the Raspberry Pi Camera Connector Daughter Card to the board at P6.
2. On the daughter card, connect the following pins with jumpers: 1 - 2, 3 - 4, and 5 - 6.
3. Connect the Raspberry Pi v2 camera module to the daughter card using the 15-pin flat

cable.
4. Connect jumpers to set the power sequence:

• VSUP1 (J4)—Connect pins 9 - 10
• VSUP2 (J5)—Connect pins 5 - 6
• VSUP3 (J6)—Connect pins 3 - 4

5. Slide SW1 to position 3, which enables the power up sequence circuit for the MIPI CSI-2
cameras.

Set Up the UART Module
6. Connect the MIPI and LVDS Expansion Daughter Card to the board at P2.
7. Connect jumper wires to the daughter card and UART module:

• RX to pin 39
• TX to pin 37
• GND to pin 35

8. Connect the UART module to your computer.
Connect Cables and Jumpers
9. On header J10, connect pins 2 - 3 with a jumper (default) to use the on-board oscillator.
10. Leave the jumper on J2 at the defaults (connecting pins 1 - 2).
11. On J3, connect pins 5 - 6.
12. Connect a USB cable to the board and to your computer.
13. Connect an HDMI cable to the board and to your monitor.
14. Connect the 12 V power supply to the board connector and to a power source.
15. Turn on the board using the power switch.

Connecting the Raspberry Pi Cable
The 15-pin flat cable for the Raspberry Pi camera has a blue stripe on one side.

• When connecting to the camera, the stripe faces away from the camera.
• When connecting to the Raspberry Pi Camera Connector Daughter Card, the stripe faces

away from the Efinix® logo.

Figure 4: Connecting Raspberry Pi Cable

Camera
Module
Back

www.efinixinc.com 7

AN 022: Using the Ruby SoC with Frame Buffer Example Design

Program the Trion® T120 BGA324
Development Board

The Trion® T120 BGA324 Development Board ships pre-loaded with an example design that
sends color bars to an HDMI monitor. To use the Ruby SoC with Frame Buffer example
design, you must program the design into the board.

1. Open the project (RiscV_wFrameBuffer_top.xml) in the Efinity® software and review it.
2. Use the Efinity® Programmer and SPI active mode to download the bitstream file to your

board. The example includes a bitstream file, RiscV_wFrameBuffer_top.hex. You use
SPI active mode because you need to reset the FPGA.

3. Press SW2 (CRESET) on the Trion® T120 BGA324 Development Board to reset the
FPGA. This reset ensures that the DDR memory initialization happens before the user
application runs.

Learn more: Instructions on how to use the Efinity® software is available in the Support Center.

Using the Software Example
The example comes with software in the RiscV_wPiCam directory. You can build the
software yourself or you can use the pre-compiled RiscV_wPiCam.elf file.

Using this Example with the RISC-V SDK
Before working with the software included with this example design, you should already be
familiar with using the Ruby SoC and RISC-V SDK. For example, you should know how to:
• Launch Eclipse using the run_eclipse.bat file (Windows) or run_eclipse.sh file (Linux)

scripts.
• Set up global environment variables.
• Create and build a software project.
• Debug using the OpenOCD debugger.
• Open a UART terminal.

Learn more: Refer to the Ruby RISC-V SoC Hardware and Software User Guide for detailed instructions
on how to perform these tasks.

www.efinixinc.com 8

http://www.efinixinc.com/support
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=RUBYUG

AN 022: Using the Ruby SoC with Frame Buffer Example Design

Create a New Project
In this step you create a new project from the RiscV_wPiCam code example.

1. Launch Eclipse.
2. Select the Ruby workspace if it is not open by default.
3. Make sure you are in the C/C++ perspective.
Import the RiscV_wPiCam example:
4. Choose File > New > Makefile Project with Existing Code.
5. Click Browse next to Existing Code Location.
6. Browse to the software\standalone\RiscV_wPiCam directory and click Select Folder.
7. Select <none> in the Toolchain for Indexer Settings box.
8. Click Finish.

Import Project Settings (Optional)
Efinix provides a C/C++ project settings file that defines the include paths and symbols for
the C code. Importing these settings into your project lets you explore and jump through the
code easily.

Note: You are not required to import the project settings to build. These settings simply make it easier for
you to write and debug code.

To import the settings:

1. Choose File > Import to open the Import wizard.
2. Expand C/C++.
3. Choose C/C++ > C/C++ Project Settings.
4. Click Next.
5. Click Browse next to the Settings file box.
6. Browse to one of the following files and click Open:

Option Description

Windows soc_Ruby\soc_Ruby_sw\config\project_settings_ruby.xml

Linux soc_Ruby/soc_Ruby_sw/config_linux/project_settings_ruby_linux.xml

7. In the Select Project box, select the project name(s) for which you want to import the
settings.

www.efinixinc.com 9

AN 022: Using the Ruby SoC with Frame Buffer Example Design

8. Click Finish.

Eclipse creates a new folder in your project named Includes, which contains all of the files
the project uses.

After you import the settings, clean your project (Project > Clean) and then build (Project
> Build Project). The build process indexes all of the files so they are linked in your project.

Enable Debugging
When you set up your workspace, you defined an environment variable for debugging with a
default value of no.
• To run the program for normal operation, keep DEBUG set to no.
• To debug with the OpenOCD debugger, set DEBUG to yes.

In debug mode, the program suspends operation after loading so that you can set breakpoints
or perform debug tasks.

To change the debug settings for your project, right-click the project name RiscV_wPiCam
in the Project Explorer and choose Properties from the pop-up menu.

www.efinixinc.com 10

AN 022: Using the Ruby SoC with Frame Buffer Example Design

1

3

7

2

4

5

6

1. Expand C/C++ Build.
2. Click C/C++ Build > Environment.
3. Click the Debug variable.
4. Click Edit.
5. Change the Value to yes.
6. Click OK.
7. Click Apply and Close.

Important: When you change the debug value for a project you previously built, you must clean the
project (Project > Clean) before building again. Otherwise, Eclipse gives a message in the Console that
there is Nothing to be done for 'all'

Build
Choose Project > Build Project or click the Build Project toolbar button.

The makefile builds the project and generates these files in the build directory:
• RiscV_wPiCam.asm—Assembly language file.
• RiscV_wPiCam.bin—Download this file to the flash device on your board using

OpenOCD. When you turn the board on, the SoC loads the application into the RISC-V
processor and executes it.

• RiscV_wPiCam.elf—Use this file when debugging with the OpenOCD debugger.
• RiscV_wPiCam.hex—Hex file.
• RiscV_wPiCam.map—Contains the SoC address map.

www.efinixinc.com 11

AN 022: Using the Ruby SoC with Frame Buffer Example Design

Import the Debug Configuration
To simplify the debugging steps, the Ruby SoC v1.1 and higher includes a debug
configuration that you import.

Note: If you are using v1.0, you need to set up the debug configuration manually as described in Create a
Debug Configuration and Set Up Debug Environment.

1. Connect your board to your computer using a JTAG cable. If you are using an Efinix
development board, you can use a USB cable instead.

2. Launch Eclipse by running the run_eclipse.bat file (Windows) or run_eclipse.sh
(Linux).

3. Select a workspace (if you have not set one as a default).
4. Open the RiscV_wPiCam project or select it under C/C++ Projects.
5. Right-click the RiscV_wPiCam project name and choose Import.
6. In the Import dialog box, choose Run/Debug > Launch Configurations.
7. Click Next. The Import Launch Configurations dialog box opens.
8. Browse to the following directory and click OK:

Option Description

Windows soc_Ruby\soc_Ruby_sw\config

Linux soc_Ruby/soc_Ruby_sw/config_linux

9. Check the box next to config (Windows) or config_linux (Linux).
10. Click Finish.
11. Right-click the RiscV_wPiCam project name and choose Debug As > Debug

Configurations.
12. Choose GDB OpenOCD Debugging > default.
13. Enter RiscV_wPiCam in the Project box.
14. Enter build\RiscV_wPiCam.elf in the C/C++ Application box.
15. Windows only: you need to change the path to the cpu0.yaml file:

a. Click the Debugger tab.
b. In the Config options box, change ${workspace_loc} to the full path to the

soc_Ruby_sw directory.

Note: For the cpu0.yaml path, make sure to use \\ as the directory separator
because the first slash escapes the second one. For example, use:
c:\\riscv\\soc_Ruby\\soc_Ruby_sw\\cpu0.yaml

16. Click Debug.

Note: If Eclipse prompts you to switch to the Debug Perspective, click Switch.

www.efinixinc.com 12

AN 022: Using the Ruby SoC with Frame Buffer Example Design

Control the Display
You can change the display by issuing commands in a terminal.

1. Open a terminal with a speed of 115200.
2. Press the Enter or spacebar. The terminal displays a list of commands.
3. Set the window height and width to 256, and set the x and y window start position to 256.

The image on the monitor shrinks and is positioned in the upper left corner.
4. Press r to reset the display.
5. Press i. The monitor displays the color bar test on the left half of the screen and video on

the right half.

Revision History

Table 1: Revision History

Date Version Description

August 2020 1.0 Initial release.

www.efinixinc.com 13

	Contents
	Introduction
	Required Hardware
	Required Software
	Download and Install the Example Design

	Functional Description
	Set Up the Hardware
	Connecting the Raspberry Pi Cable
	Program the Trion® T120 BGA324 Development Board
	Using the Software Example
	Using this Example with the RISC-V SDK
	Create a New Project
	Import Project Settings (Optional)
	Enable Debugging
	Build

	Import the Debug Configuration
	Control the Display

	Revision History

