T3EFINIX.

White Paper

Why the XLR Cell is a Big Deal

Figure 1 Basic Logic Element

_>

—» 4-Input
—» LUT Flipflop —»
_>

LT

People talk about the logic element (LE), or logic cell, as being the basic building
block of FPGAEs. In reality, the LE is a fictional structure. If you look at the actual
architecture diagrams for FPGAs, they vary significantly. Some have simple logic
blocks. Some have clustered blocks with complex logic functions. Most have ded-
icated routing lines. Some have advanced blocks for arithmetic functions. All have
some form of embedded RAM. But no two FPGA architectures are alike, making
a true comparison challenging. However, by considering the logic capability of an
FPGA in LEs, customers can compare FPGA product families and vendors more
easily. At Efinix, we define an LE as a 4-input look-up table (LUT) and a flipflop

(Figure 1), which is a definition commonly used in the industry.

Traditional Architectures

Having dedicated logic and dedicated routing seems like a good idea on the surface.
In reality it means that you are leaving something on the table, area-wise. Most
complex logic blocks have only so many ways to enter and leave the block. Once
you have used up all of the doorways, you cannot access any remaining logic in

the block. And the dedicated routing may get signals across the chip quickly, but if
there are only a few ways to get on and off the routing line, there is congestion that
limits its usefulness. Think of a freeway with only a few on/off ramps. If everyone
has to get on or off at the same place, you are going to be sitting in a traffic jam.
But if there are a lot of entries on and off, the traffic spreads out and can run more
smoothly. The XLR cell functions on that concept: because any XLR cell can be
routing, software can choose the best paths to avoid congestion.

Congestion results from few on/off ramps

www.efinixinc.com

https://www.efinixinc.com/products-titanium.html?utm_source=web&utm_medium=wp-xlr-2.0
https://www.efinixinc.com/?utm_source=web&utm_medium=wp-xlr-2.0
https://www.efinixinc.com/?utm_source=web&utm_medium=wp-xlr-2.0

Why the XLR Cell is a Big Deal White Paper

eXchangeable Logic and Routing Cell

The basic architecture for Efinix FPGAs, which we call the
Quantum architecture (or fabric), comprises a regular grid
structure of logic blocks plus RAM and multipliers/DSP
Blocks. The logic block is called the eXchangeable Logic and
Routing (XLR) cell. The XLR cell is exactly what the name
implies: a block that can act as logic and as routing (Figure 2).
So instead of dedicated routing lines and big complex blocks,
Efinix FPGAs have a small, simple structure, the XLR cell,
that does everything.

In our Trion family, the data sheet reports the logic capacity
for a given FPGA in LEs. The XLR cell in the Trion family

is essentially a 4-input LUT with a flipflop, but it also has
built-in adder capability, which gives it the ability to perform
additional logic functions. Although the XLR cell includes the
extra adder functionality, Efinix considers that Trion FPGAs
have a 1:1 mapping of LEs to XLR cells. Each XLR cell is
equivalent to one LE. In the Efinity software, when you com-
pile your design, you get a report of the logic usage in LEs so
you can understand how much of the available logic capacity
is used.

The Titanium XLR Cell packs in 20% more logic

capacity than a regular LE.

Titanium XLR Cells are Upgraded

The high-performance Titanium family is a little different. In
addition to giving the number of LEs for each family mem-
ber, the data sheet also reports the number of XLR cells. For
example, the Ti60 Data Sheet gives the number of LEs as
62,016 and the number of XLR cells as 60,800. You might
wonder: why are those numbers different and what does that
mean for the logic capacity?

As you probably guessed, the mapping of XLR cells to LEs is
not 1:1. In the Titanium family, we have upgraded the Quan-
tum architecture to better support compute functions. One
upgrade adds 8-bit shift register functionality to the XLR cell.
Adding this function gives the XLR cell the ability to do more
than a regular 4-input LUT plus a flipflop. Additionally, the
4-input LUT is fracturable, which means that it can function
as a 3-input LUT and a 2-input LUT at the same time, pro-
viding even more capabilities (Figure 3). These improvements
have a strong effect on the amount of logic the XLR cell can
implement. After thousands of experiments to quantify the
effect of Titanium XLR cell enhancements, Efinix has deter-
mined that they provide the ability to pack 20% more logic

Figure 2 Grid of XLR Cells

-, -~

<< /4 Logic b
|) I ‘|
\ Vi [
S~ { |
AN \ !
X q]
X Routing
-
\\ ’/
XLR Cell

Not to scale

Figure 3 Logic Functions in Titanium XLR Cell

4-Input LUT
LUT Out
INput[3:0] =P
4-Input))
Clock— LUT Flipflop —> Register Out
Clock Enable—p>
Full Adder
Input{1:0] =P Sum Out
Clock—p Full -)
pflop — Register Out
Clock Enable—pp Adder
Carry In—p) Carry Out

Fracturable LUT or Full Adder

Data Out
Input[3:0]=P Fracturable
Clock—p» LUT (1) Flipflop —» Register Out
Clock Enable —p» or Full —» Flexible Carry Out
Carry In—p» Adder —p Carry Out
—» Propagate Out
or Data Out 2
8-Bit Shift Register
Input —p> Data Out
Clock—p Shift
Clock Enable—> R A|t Flipflop —» Register Out
Address[2:0]—) egister
Carry In—p —p» Cascade Out

1. The fracturable LUT is a combination of a 3-input LUT and a
2-input LUT. They share 2 of the same inputs.

https://www.efinixinc.com/?utm_source=web&utm_medium=wp-xlr-2.0
https://www.efinixinc.com/technology.html?utm_source=web&utm_medium=wp-xlr-2.0
https://www.efinixinc.com/products-trion.html?utm_source=web&utm_medium=wp-xlr-2.0
https://www.efinixinc.com/products-efinity.html?utm_source=web&utm_medium=wp-xlr-2.0

Why the XLR Cell is a Big Deal White Paper

than a regular LE. So every XLR cell is worth 1.2 LEs. Using
a multiplier to equate a complex block to LEs is common

in the FPGA industry. As we mentioned earlier, the LE is a
fictional construct and most FPGA architectures are much

more complex than that. One vendor uses ratios like 1.6:1 or
2.18:1 to get their LE counts."” Another uses 2.94.”

Stating that the ratio of LEs to XLR cells is 1.2:1 does not
explain why the reported number of XLR cells is Jower than
the reported number of LEs in the data sheet. Remember that
the XLR cell is used for both logic and routing. Efinix reserves
15% of the XLR cells for routing; the percentage is based on
the results of extensive experimentation. The data sheet shows
the total number of XLR cells available for both logic and
routing. Of those, 15% are reserved for routing, leaving 85%
for logic. To do the math:

60,800 XLR cells x 0.85 x 1.2 = 62,016 LEs

Dynamic Logic and Routing

Some designs need more routing, some need less, and that is
where the XLR cell shows its quality. The Efinity software has
heuristics that estimate the number of XLR cells your design
may need for routing. If your design does not need all of the
reserved routing XLR cells, the software can dynamically use
them for more logic (Figure 4). Additionally, because the XLR
cell supports both logic and routing, after the software places
all of the logic it can use those same XLR cells for routing too.
Consider a scenario where your design is progressing well,
everything is routing fine, the FPGA is nearly packed full of
logic. But you need to add just a bit more. With a traditional

Figure 4 Comparing Logic vs. Routing Usage

Some Designs Use More Logic

FPGA, when the logic is used up there is nowhere left to go.
With the XLR cell, you can go that extra step, pack in that ex-
tra bit of logic, push it to eleven.”® The bottom line: you can
use more XLR cells, and therefore more LEs, than are actually
shown in the data sheet. That point is actually so important
that it bears repeating:

Titanium FPGAs can give you
more logic than the data sheet says.

If you can get more logic than the data sheet shows, then you
might ask: why show a lower number, why not inflate the
logic count? As we explained earlier, Efinix has performed
extensive experimental testing that has guided the values given
in the data sheet. Although many designs may be able to get
away with less routing, others really need all of those reserved
XLR cells. The data sheet gives a conservative estimate of the
number of routing XLR cells required for average designs.
Obviously, no one wants routing to “steal” XLR cells from the
logic capacity.

The XLR Cell in Action

When you read the Efinity placer report, the software reports
the usage in XLR cells for logic and the estimate it needs for
routing. Figure 5 is a report snippet that shows the resource
usage for the 32-bit RISC processor (oc_m1_core) open-
source design. This design is stamped 8 times and targets the
Ti60 FPGA. Stamping designs is a common way for FPGA
vendors to create large designs to fill up a device for bench-
marking and experimentation.”! The FPGA is packed pretty
full with over 93% of XLR cells used and just over 9% of the
available XLR cells are reserved for routing.

Some Designs Need More Routing

[| [| [| [|
[| [[| [[| [|
[| [| [| [[| [[] |
[[| [| |
[| [|
|| [|
[| [|
[| | [| [[|
H Nl [| | [|
[| [| [| [| [|
[| [| |
| [|
[|
[| [| [[[|
[| [| | [|
[| [|
[| [| H En
[[| | [[] | |
Not to scale
Logic [Routing Unused

https://www.efinixinc.com/?utm_source=web&utm_medium=wp-xlr-2.0
https://www.efinixinc.com/technology.html?utm_source=web&utm_medium=wp-xlr-2.0
https://www.efinixinc.com/products-titanium.html?utm_source=web&utm_medium=wp-xlr-2.0
https://www.efinixinc.com/products-efinity.html?utm_source=web&utm_medium=wp-xlr-2.0

Why the XLR Cell is a Big Deal White Paper

Analyzing the numbers in the report:

¢ The design uses 5,598 XLR cells for routing, which is
about 60% of the 9,120 XLR cells that are reserved for
routing (15% of 60,800).

¢ The design uses 51,194 XLR cells for logic, which is equiv-
alent to 61,432.8 LEs.

¢ 'There are 4,008 XLR cells unused, which can be logic and
routing. If we save 15% of the unused cells for routing,
there are 3,406 (rounding down) left for logic. That num-
ber equates to 4,087 LEs left, which is about 3,500 LEs
more than what the data sheet reports.

Figure 6 shows the floorplan for this design, which gives a
visual representation of how the logic and routing are packed
(blue cells are logic and orange are routing).

Topaz XLR Cells

'The Topaz family builds on the Titanium architecture with
enhancements targeted for mass market applications. The core
logic is essentially the same as the Titanium family, but the
XLR cell has been optimized for volume production. There-
fore, the XLR cell to LE mapping is about 1.1:1. This en-
hancement gives you a larger XLR to LE ratio enabling more
optimization potential for Topaz FPGA:s.

The XLR Cell is a Big Deal

The bottom line is, because the XLR cell can function as logic
and routing, you can potentially use a// of the available XLR
cells for logic. With the XLR cell you get more. More logic,
more efficiency, more room to innovate. And that is why the

XLR cell is a big deal.

ToraZ

References

Figure 5 Efinity Placer Report Excerpt

—————————— Resource Summary (begin) ----------

Inputs: 4 / 1411 (0.28%)

Outputs: 1 /2252 (0.04%)

Global and Regional Buffers: 0 / 64 (0.00%)

XLRs: 56792 / 60800 (93.41%)
XLRs needed for Logic: 28645 / 60800 (47.11%)
XLRs needed for Logic + FF: 15580 / 60800 (25.62%)
XLRs needed for Adder: 4568 / 60800 (7.51%)
XLRs needed for Adder + FF: 312 / 60800 (0.51%)
XLRs needed for FF: 2089 / 60800 (3.44%)
XLRs needed for SRL8: 0/ 14720 (0.00%)
XLRs needed for SRL8+FF: 0 / 14720 (0.00%)
XLRs needed for Routing: 5598 / 60800 (9.21%)

Memory Blocks: 16 / 256 (6.25%)

DSP Blocks: 0 / 160 (0.00%)

—————————— Resource Summary (end) ----------

Figure 6 32-Bit RISCV Processor Design Floorplan

Floorplan Editor

2+ 0 plale 2a 043

[1] “System logic cells,” Xilinx forum, https://forums.xilinx.com/t5/Versal-and-UltraScale/Sysem-logic-cells/m-p/959067#M9565, 2019.

[2] Intel Stratix 10 GX/SX Product Table, Intel. Gen-1023-2.0. Divide the number of LEs by the number of ALMs to get the ratio.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf

[3] Paraphrasing Nigel Tufnel’s elucidative discourse on the importance of going to eleven, “This Is Spinal Tap,” Embassy Pictures, 1984.

[4] Won, Martin and Monga, Madhu. Intel Arria 10 FPGA Performance Benchmarking Methodology and Results, Intel. WP-01271-1.0.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01271-intel-arria10-performance-benchmarking-methodology-and-results.pdf

WP-XLR-2.0

© 2024 Efinix Inc. All rights reserved. Efinix, the Efinix logo, Quantum, Trion, Titanium
logo, Topaz logo, and Efinity are trademarks of Efinix, Inc. All other trademarks and

service marks are the property of their respective owners. All specifications subject to
change without notice.

20400 Stevens Creek Blvd
TBEFINIX. |52
N~ ®

Cupertino, CA 95014

@6

n

https://www.efinixinc.com/products-topaz.html?utm_source=web&utm_medium=wp-xlr-2.0
https://www.efinixinc.com/?utm_source=web&utm_medium=wp-xlr-2.0
https://www.efinixinc.com/technology.html?utm_source=web&utm_medium=wp-xlr-2.0
https://www.efinixinc.com/products-topaz.html?utm_source=web&utm_medium=wp-xlr-2.0

