
By design, an FPGA can be reconfigured to perform any function you program into
it. But if left undefended, a malicious user could potentially subvert the FPGA to
perform some other undesired function. To be secure from this type of attack, the
FPGA needs to have an anti-tampering function. One method to prevent tamper-
ing is by authenticating the configuration bitstream to ensure that the FPGA can
only use the bitstream file you created. Another potential issue is intellectual prop-
erty theft. After working hard to create your hardware product, the last thing you
want is for someone to reverse engineer the FPGA’s functionality to steal your work
and potentially create a competing product from it. To protect your IP, the FPGA
needs to support bitstream encryption so you can be sure that your design is secure.

Titanium FPGAs have built-in authentication and encryption security features to
help keep your applications safe. You can use one or the other or both to secure
your bitstream.

Authentication
Titanium FPGAs support asymmetric bitstream authentication with the RSA-4096
algorithm. You create a public/private key pair and sign the bitstream with the
private key. Then, you save the public key data into fuses in the FPGA. During con-
figuration, the FPGA validates the signature on the bitstream using the public key.

If the signature is correct, the FPGA knows that the bitstream came from a trusted
source and has not been altered by a third party. The FPGA continues configuring
normally and goes into user mode. If the signature is not correct, the FPGA stops
configuration and does not go into user mode.

Securing Titanium Applications

Titanium FPGAs have built-in
security to help prevent tampering
and to protect your design.

Figure 1 Bitstream Authentication

The FPGA has fuses that contain data about the RSA public key. The FPGA uses the public key to validate the signature.
The private key stays private.

Create Keys

Signed
Bitstream

Sign Bitstream

Private
Key

Public
Key

Authenticate

Developer’s Computer FPGA in System

Configured

Blow Fuses

Valid
Signature

Invalid
Signature Do Not Enter

User Mode
Fuses

Unsigned
Bitstream

FPGA in
User Mode

Securing Titanium Applications

Ti-SECURITY-1.0

© 2021 Efinix Inc. All rights reserved. Efinix, the Efinix logo, Titanium logo, Quantum,
Trion, and Efinity are trademarks of Efinix, Inc. All other trademarks and service marks
are the property of their respective owners. All specifications subject to change
without notice.

900 Lafayette St, Suite 406
Santa Clara, CA 95050
www.efinixinc.com

Encryption
To ensure that your intellectual property remains safe, Tita-
nium FPGAs use symmetric encryption with a 256-bit key
and the AES-GCM-256 algorithm. You generate the key and
encrypt the bitstream with it. Then, you save the key into the
FPGA by blowing fuses. During configuration, the FPGA
uses the stored key to decrypt the bitstream. The key cannot
be extracted from the fuses, so a malicious user cannot recover
the plaintext bitstream.

Efinity® Software Makes It Easy
The Efinity® software includes built-in tools that make it easy
for you to generate keys, blow fuses, and encrypt bitstreams.

Generating Keys

The Efinity software has a built-in key generator tool that you
use to generate the AES key (.bin) and/or RSA keys (.bin
public and .pem private). Optionally, you can generate these
keys using strong randomization if you need that feature.
Additionally, because the RSA .pem file format is an industry
standard, you can use an RSA private key file generated from
a third-party tool. Make sure to save the keys in a safe place!
The software also creates a serial vector format (.svf) file that
you use to blow the fuses.

Securing the Bitstream

To secure the bitstream, you simply point to the key files in
the Efinity Project Editor (Bitstream Generation tab) and
turn on authentication and/or encryption. During compila-
tion, the Efinity software automatically secures the bitstream
with the keys. You can then program the FPGA with the
secured bitstream as you normally would.

Blowing Fuses

You use a JTAG SVF player and the .svf file to blow the fuses.
If you are working with an Efinix development kit, you use
the Efinity software’s built-in JTAG SVF Player and a USB
cable. In the manufacturing environment, you can use any
JTAG SVF player and just a JTAG cable. After you blow the
fuses, power cycle the board or trigger CRESET_N for the
fuse settings to take effect. Blowing fuses is a permanent ac-
tion. You cannot change the key values once you have blown
them into the fuses. So be very sure you are ready when you
take that step!

Verifying the Security
After you have completed this whole process, you may want
to check that the security function is working correctly. With
a secured bitstream and the correct keys, the FPGA simply
goes into user mode as usual. But, you can test what might
happen if there is a problem with the bitstream or keys. For
example, you can sign the bitstream with an incorrect .pem
file or encrypt the bitstream with an incorrect AES key. In
either case, the FPGA should not go to user mode. Similarly,
if you are using authentication, if you try to send an unsigned
bitstream to the FPGA, it should not go into user mode.
Finally, you can use the Efinity Programmer to check whether
the FPGA security engine processed the RSA and/or AES
algorithms, and whether the algorithms were successful.

Your Application Is Secure
The Titanium family’s embedded security engine uses simple
and well-proven cryptographic techniques to ensure that your
intellectual property is secure and that only good bitstreams
from trusted sources can configure the FPGAs. In this way,
systems containing Titanium FPGAs are kept secure and free
from malicious attacks.

Figure 2 Bitstream Encryption

The FPGA has fuses that store the 256-bit key used to decrypt the bitstream.

Create Key

Encrypted
Bitstream

Plaintext
Bitstream

Encrypt

Key

Decrypt

Developer’s Computer FPGA in System

Blow Fuses

Fuses

Configured

Decryption
Successful

Decryption
Fails Do Not Enter

User Mode

FPGA in
User Mode

